求数组的子数组之和的最大值

转自:http://blog.csdn.net/v_JULY_v/article/details/6444021

题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。

 

分析:
1、
求一个数组的最大子数组和,如此序列1, -2, 3, 10, -4, 7, 2, -5,我想最最直观也是最野蛮的办法便是,三个for循环三层遍历,求出数组中每一个子数组的和,最终求出这些子数组的最大的一个值。
记Sum[i, …, j]为数组A中第i个元素到第j个元素的和(其中0 <= i <= j < n),遍历所有可能的Sum[i, …, j],那么时间复杂度为O(N^3):

//本段代码引自编程之美
int MaxSum(int* A, int n)
{
int maximum = -INF; 
int sum=0; 
for(int i = 0; i < n; i++)
{
   for(int j = i; j < n; j++)
   {
      for(int k = i; k <= j; k++)
      {
        sum += A[k];
      }
      if(sum > maximum)
      maximum = sum;
      sum=0;
   }
}
return maximum;
} 

 

 

2、现在给出O(N)时间复杂度的算法:

#include <iostream.h>   
  
int maxSum(int* a, int n)  
{  
    int sum=0;  
    //其实要处理全是负数的情况,很简单,如稍后下面第3点所见,直接把这句改成:"int sum=a[0]"即可   
    //也可以不改,当全是负数的情况,直接返回0,也不见得不行。   
    int b=0;  
      
    for(int i=0; i<n; i++)  
    {  
        if(b<0)           //...   
            b=a[i];  
        else  
            b+=a[i];  
        if(sum<b)  
            sum=b;  
    }  
    return sum;  
}  
  
int main()  
{  
    int a[10]={1, -2, 3, 10, -4, 7, 2, -5};  
    //int a[]={-1,-2,-3,-4};  //测试全是负数的用例   
    cout<<maxSum(a,8)<<endl;  
    return 0;  
}  
  
/*------------------------------------- 
解释下: 
例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5, 
那么最大的子数组为3, 10, -4, 7, 2, 
因此输出为该子数组的和18。 
 
所有的东西都在以下俩行, 
即: 
b  :  0  1  -1  3  13   9  16  18  13   
sum:  0  1   1  3  13  13  16  18  18 
   
其实算法很简单,当前面的几个数,加起来后,b<0后, 
把b重新赋值,置为下一个元素,b=a[i]。 
当b>sum,则更新sum=b; 
若b<sum,则sum保持原值,不更新。。


3、不少朋友看到上面的答案之后,认为上述思路2的代码,没有处理全是负数的情况,当全是负数的情况时,我们可以让程序返回0,也可以让其返回最大的那个负数,修改后的处理全是负数情况(返回最大的负数)的代码:

#include <iostream.h>   
#define n 4           //多定义了一个变量   
  
int maxsum(int a[n])    
//于此处,你能看到上述思路2代码(指针)的优势   
{  
    int max=a[0];       //全负情况,返回最大数   
    int sum=0;  
    for(int j=0;j<n;j++)  
    {  
        if(sum>=0)     //如果加上某个元素,sum>=0的话,就加   
            sum+=a[j];  
        else     
            sum=a[j];  //如果加上某个元素,sum<0了,就不加   
        if(sum>max)  
            max=sum;  
    }  
    return max;  
}  
  
int main()  
{  
    int a[]={-1,-2,-3,-4};  
    cout<<maxsum(a)<<endl;  
    return 0;  
}  

4、DP解法的具体方程设sum[i] 为前i个元素中,包含第i个元素且和最大的连续子数组,result 为已找到的子数组中和最大的。对第i+1个元素有两种选择:做为新子数组的第一个元素、放入前面找到的子数组。
sum[i+1] = max(a[i+1], sum[i] + a[i+1])
result = max(result, sum[i])

 

扩展:
1、如果数组是二维数组,同样要你求最大子数组的和列?(详见编程之美2.15)
2、如果是要你求子数组的最大乘积列?
3、如果同时要求输出子段的开始和结束列?

 

附:

下面给出《Data structures and Algorithm analysis in C》中4种实现。

//Algorithm 1:时间效率为O(n*n*n)   
int MaxSubsequenceSum1(const int A[],int N)  
{  
    int ThisSum=0 ,MaxSum=0,i,j,k;  
    for(i=0;i<N;i++)  
        for(j=i;j<N;j++)  
        {  
            ThisSum=0;  
            for(k=i;k<j;k++)  
                ThisSum+=A[k];  
              
            if(ThisSum>MaxSum)  
                MaxSum=ThisSum;  
        }  
        return MaxSum;  
}  
  
//Algorithm 2:时间效率为O(n*n)   
int MaxSubsequenceSum2(const int A[],int N)  
{  
    int ThisSum=0,MaxSum=0,i,j,k;  
    for(i=0;i<N;i++)  
    {  
        ThisSum=0;  
        for(j=i;j<N;j++)  
        {  
            ThisSum+=A[j];  
            if(ThisSum>MaxSum)  
                MaxSum=ThisSum;  
        }  
    }  
    return MaxSum;  
}  
  
//Algorithm 3:时间效率为O(n*log n)   
//算法3的主要思想:采用二分策略,将序列分成左右两份。   
//那么最长子序列有三种可能出现的情况,即   
//【1】只出现在左部分.   
//【2】只出现在右部分。   
//【3】出现在中间,同时涉及到左右两部分。   
//分情况讨论之。   
static int MaxSubSum(const int A[],int Left,int Right)  
{  
    int MaxLeftSum,MaxRightSum;              //左、右部分最大连续子序列值。对应情况【1】、【2】   
    int MaxLeftBorderSum,MaxRightBorderSum;  //从中间分别到左右两侧的最大连续子序列值,对应case【3】。   
    int LeftBorderSum,RightBorderSum;  
    int Center,i;  
    if(Left == Right)Base Case  
        if(A[Left]>0)  
            return A[Left];  
        else  
            return 0;  
        Center=(Left+Right)/2;  
        MaxLeftSum=MaxSubSum(A,Left,Center);  
        MaxRightSum=MaxSubSum(A,Center+1,Right);  
        MaxLeftBorderSum=0;  
        LeftBorderSum=0;  
        for(i=Center;i>=Left;i--)  
        {  
            LeftBorderSum+=A[i];  
            if(LeftBorderSum>MaxLeftBorderSum)  
                MaxLeftBorderSum=LeftBorderSum;  
        }  
        MaxRightBorderSum=0;  
        RightBorderSum=0;  
        for(i=Center+1;i<=Right;i++)  
        {  
            RightBorderSum+=A[i];  
            if(RightBorderSum>MaxRightBorderSum)  
                MaxRightBorderSum=RightBorderSum;  
        }  
        int max1=MaxLeftSum>MaxRightSum?MaxLeftSum:MaxRightSum;  
        int max2=MaxLeftBorderSum+MaxRightBorderSum;  
        return max1>max2?max1:max2;  
}  
  
//Algorithm 4:时间效率为O(n)   
//同上述第一节中的思路3、和4。   
int MaxSubsequenceSum(const int A[],int N)  
{  
    int ThisSum,MaxSum,j;  
    ThisSum=MaxSum=0;  
    for(j=0;j<N;j++)  
    {  
        ThisSum+=A[j];  
        if(ThisSum>MaxSum)  
            MaxSum=ThisSum;  
        else if(ThisSum<0)  
            ThisSum=0;  
    }  
    return MaxSum;  
}   


  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值