单调队列是指队列中的元素按照严格单调递增或者单调递减的顺序。有两个性质(以单调递增队列为例):
1、从队头到队尾的元素是按照严格单调递增的,如(1,2,3,4,5)。
2、越靠近队头的元素越先入队
单调队列可以从两端进行操作(以单调递增队列为例):
入队:如果当前元素是e,从队尾开始检查,删除大于等于e的队尾元素,直到队尾元素小于e或者队列为空,然后将e插入队尾。如果队列大小有限制,则在入队之前检查队列大小,如果空间不够,则从队首弹出元素。
出队:直接从队首取元素,即最小值。
以下是一个单调递增队列的例子:
队列大小不能超过3,入队元素依次为3,2,8,4,5,7,6,4
3入队:(3)
3从队尾出队,2入队:(2)
8入队:(2,8)
8从队尾出队,4入队:(2,4)
5入队:(2,4,5)
2从队头出队,7入队:(4,5,7)
7从队尾出队,6入队:(4,5,6)
6从队尾出队,5从队尾出队,4从队尾出队,4入队:(4)
以上左端为队头,右端为队尾。从队尾出队是为了符合性质2,从队头出队是为了符合队列的大小限制。
单调队列可以用来优化dp,将O(n)的复杂度降到O(1)。
本文参考:点击打开链接(http://blog.csdn.net/alongela/article/details/8227590)
___________________________________________________________________________________
题目:HDU3415
题意:给n个数字,这些数构成一个环,问在跨度不大于m个数字的区间里,和最大是多少?(输出字典序最小的,如果还是多个,输出区间长度最小的)
解析:本题使用递减的单调队列,即越靠近队首(越早入队)的元素越小,存储到sum[i],用单调队列来维护长度m。队首元素即为当前区间的某个sum最小值,ans = max(ans, sum[i] - Q[st].value)。
具体见代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N = 100005;
const int INF = -100000005;
struct node{
int index, value;
};
node Q[N<<1];
int a[N<<1];
int main(){
int t, m, n;
int l, r, st, ed, ans, sum;
node p, q;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++){
scanf("%d", &a[i]);
a[i+n] = a[i];
}
Q[0].index = -1;
Q[0].value = 0;
sum = 0;
ans = INF;
st = 0, ed = 0;
for(int i = 0; i < 2*n; i++){
sum += a[i];
while(Q[ed].index - Q[st].index >= m) st++;
if(ans < sum - Q[st].value){
ans = sum - Q[st].value;
l = Q[st].index + 1;
r = i;
}
while(st <= ed && sum < Q[ed].value)
ed--;
p.index = i, p.value = sum;
Q[++ed] = p;
}
printf("%d %d %d\n", ans, l%n+1, r%n+1);
}
return 0;
}