最小生成树——Prim

prim算法是求最小生成树的算法,与求最短路径的dijstra算法类似。是以点为基础进行扩展的。算法的执行过程为:划分两个集合,一个是已放置好的点,另一个数未放置好的点。从任意一个点开始,将这个点放入第一个集合,然后找到与第二个集合中与第一个集合中点距离最近的点,加入第一个集合,重复此操作,一直到所有点都加入为止。

时间复杂度:未优化之前的复杂度是O(v^2),使用优先级队列优化后可以达到O(ElogE)。


未优化前:无论是使用邻接表还是邻接矩阵,时间复杂度都是O(v^2),因为需要加入v条边即外层循环V次O(v),内层需要遍历所有点O(v)来找下一个出发点以更新dis数组,总的复杂度为O(v^2)。

代码(邻接矩阵):

#include <stdio.h>
#include <string.h>
#define INF 0xfffffff
#define N 550

int V, E;
bool vis[N];
int dis[N], map[N][N];					// dis数组保存与i点相连的最短边,map为邻接矩阵 
void Init(){						// 初始化 
	for(int i = 1; i <= V; i ++){
		for(int j = 1; j <= V; j ++){
			map[i][j] = INF;
		}
		vis[i] = 0;
	}
}
int Prime(int choose){					// choose 为最小生成树的出发点,其实在这儿不重要,可默认为1 
	for(int i = 1; i <= V; i ++){			// 更新dis数组 
		dis[i] = map[choose][i];
	}
	vis[choose] = 1;				// 标记出发点 
	dis[choose] = 0;
	int ans = 0;
	for(int j = 1; j < V; j ++)
	{
		int min = INF;
		for(int i = 1; i <= V; i ++)
		{					// 选取边权最小的点作为下一个出发点 
			if(!vis[i] && min > dis[i]){
				min = dis[i];
				choose = i;
			}
		}
		ans += min;
		vis[choose] = 1;
		for(int i = 1; i <= V; i ++){		// 以最新的出发点的边更新dis数组 
			if(!vis[i] && dis[i] > map[choose][i]){
				dis[i] = map[choose][i];
			}
		}
	}
	return ans;
}

int main()
{
	int loop;
	int start, end, len;
	scanf("%d", &loop);
	while(loop --){
		scanf("%d%d", &V, &E);
		Init();
		for(int i = 0; i < E; i ++){			// 建图 
			scanf("%d%d%d", &start, &end, &len);
			map[start][end] = map[end][start] = len;
		}
		int ans = Prime(1);
		printf("%d\n", ans);
	}
	return 0;
}


优化之后:首先需要使用邻接表来存才能降低复杂度。先把与第一个点相邻的点加入队列,然后重复执行一下操作:从队列中拿出距离最小且未加入的点,把这个点加入集合,然后再将与此点相邻的点都加入队列,直到所有点都加入。因为有E条边,这个过程一共加入了E个点,时间复杂度为O(ElogE)。

代码:

#include <stdio.h>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
#define INF 0xfffffff
#define N 550
struct Node{
	int to, len;
	bool operator <(const Node &a)const{
		return len > a.len;
	}
};
int V, E;
bool vis[N];
vector<Node> G[N];
priority_queue<Node> Q;
void Init(){
	for(int i = 1; i <= V; i ++){
		G[i].clear();
		vis[i] = 0;
	}
	while(!Q.empty())Q.pop();
}
int Prime(int choose){
	Node p;
	for(int i = 0; i < G[choose].size(); i++)
		Q.push(G[choose][i]);
	vis[choose] = 1;
	int ans = 0, cnt = V - 1;
	while(!Q.empty() && cnt){
		p = Q.top();Q.pop();
		if(vis[p.to])continue;
		vis[p.to] = 1;
		ans += p.len;
		cnt--;
		choose = p.to;
		for(int i = 0; i < G[choose].size(); i++){
			p = G[choose][i];
			if(!vis[p.to]) Q.push(p);
		}
	}
	return ans;
}

int main()
{
	int loop;
	int start, end, len;
	Node p;
	scanf("%d", &loop);
	while(loop --){
		scanf("%d%d", &V, &E);
		Init();
		for(int i = 0; i < E; i ++){
			scanf("%d%d%d", &start, &end, &len);
			p.len = len;
			p.to = end;
			G[start].push_back(p);
			p.to = start;
			G[end].push_back(p);
		}
		int ans = Prime(1);
		printf("%d\n", ans);
	}
	return 0;
}

(以上代码未运行)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值