本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着互联网技术的飞速发展和信息量的爆炸式增长,新闻资讯已成为人们日常生活中不可或缺的一部分。然而,面对海量的新闻信息,用户往往难以从中筛选出符合自己兴趣和需求的内容。传统的新闻推荐系统大多基于热门话题或点击率进行推荐,缺乏个性化和精准度。因此,设计并实现一个热点推荐个性化新闻系统,旨在通过分析用户的偏好、行为以及当前的社会热点,为用户提供更加精准、个性化的新闻推荐服务,成为了一个亟待解决的问题。该系统不仅能够提升用户体验,还能促进新闻内容的精准传播,具有重要的现实意义和应用价值。
意义
热点推荐个性化新闻系统的设计与实现,对于推动新闻传播行业的数字化转型具有重要意义。该系统通过运用大数据分析和人工智能技术,能够深入挖掘用户的个性化需求,实现新闻内容的精准推送,从而增强用户粘性,提高新闻的阅读率和传播效率。此外,该系统还能够根据时事热点和地域特色,为用户提供多样化的新闻选择,丰富用户的阅读体验,促进新闻资讯的多元化传播。这对于构建健康、活跃的网络新闻生态,推动新闻传播行业的可持续发展具有深远影响。
目的
本项目的目的是设计并实现一个功能完善的热点推荐个性化新闻系统,该系统能够基于用户的兴趣偏好、历史行为以及当前的时事热点,为用户提供个性化的新闻推荐服务。通过该系统,用户能够轻松获取到符合自己兴趣和需求的新闻资讯,提高阅读效率和满意度。同时,该系统还能够根据用户的反馈和互动数据,不断优化推荐算法,提升推荐的精准度和个性化程度。最终,该项目旨在为用户提供一个高效、便捷、个性化的新闻阅读平台,推动新闻传播行业的数字化转型和可持续发展。
研究内容
本项目的研究内容主要包括以下几个方面:
首先,系统需要构建完善的用户模型,通过收集和分析用户的注册信息、历史浏览记录、点击行为等数据,深入挖掘用户的兴趣偏好和行为特征,为个性化推荐提供数据基础。
其次,系统需要实现新闻内容的分类和标签化,包括新闻类型(如体育、科技、娱乐等)、省份(如北京、上海、广东等)以及时事新闻和视频新闻等不同类型的新闻内容。通过对新闻内容进行细致的分类和标签化,系统能够更准确地理解新闻内容,为推荐算法提供丰富的特征信息。
此外,系统还需要设计并实现高效的推荐算法,结合用户的兴趣偏好、历史行为以及当前的时事热点,为用户生成个性化的新闻推荐列表。推荐算法需要综合考