深度有趣 | 20 CycleGAN性别转换

本文介绍了CycleGAN模型及其在性别转换任务中的应用。通过非配对的图像,CycleGAN可以实现图像间的翻译,如苹果到橘子,甚至性别转换。文中详细讲述了CycleGAN的原理、损失函数,以及在TensorFlow中的实现。此外,还分享了如何训练模型、使用模型转换性别,并展示了视频性别转换的实现过程。
摘要由CSDN通过智能技术生成

简介

介绍可用于实现多种非配对图像翻译任务的CycleGAN模型,并完成性别转换任务

原理

和pix2pix不同,CycleGAN不需要严格配对的图片,只需要两类(domain)即可,例如一个文件夹都是苹果图片,另一个文件夹都是橘子图片

使用A和B两类图片,就可以实现A到B的翻译和B到A的翻译

论文官方网站上提供了详细的例子和介绍,https://junyanz.github.io/CycleGAN/,例如苹果和橘子、马和斑马、夏天和冬天、照片和艺术作品等

CycleGAN非配对图像翻译示例

以及论文的官方Github项目,https://github.com/junyanz/CycleGAN,使用PyTorch实现

CycleGAN由两个生成器G和F,以及两个判别器Dx和Dy组成

CycleGAN模型结构

G接受真的X并输出假的Y,即完成X到Y的翻译;F接受真的Y并输出假的X,即完成Y到X的翻译;Dx接受真假X并进行判别,Dy接受真假Y并进行判别

CycleGAN的损失函数和标准GAN差不多,只是写两套而已

L G A N ( G , D Y , X , Y ) = E y ∼ p y [ log ⁡ D Y ( y ) ] + E x ∼ p x [ log ⁡ ( 1 − D Y ( G ( x ) ) ) ] L_{GAN}(G,D_Y,X,Y)=\mathbb{E}_{y\sim p_y}[\log D_Y(y)]+\mathbb{E}_{x\sim p_x}[\log(1-D_Y(G(x)))] LGAN(G,DY,X,Y)=Eypy[logDY(y)]+Expx[log(1DY(G(x)))]

L G

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值