- 博客(3)
- 资源 (1)
- 收藏
- 关注
转载 KL散度(Kullback-Leibler_divergence)
一、第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。 KL散度是两个概率分布P和Q差别的非对称性的度量。 KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所
2017-02-23 04:24:20 3299
转载 机器学习中的数学-强大的矩阵奇异值分解(SVD)及其应用
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博: @leftnoteasy前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用
2017-01-06 05:40:55 270
原创 小波变换以及基于小波贝叶斯压缩感知资料收藏
小波变换以及基于小波贝叶斯压缩感知资料收藏最近开始多注重了些论文,开始学习贝叶斯压缩感知的原理和一些方法,看看能不能从概率上去寻找一些不一样的东西。正巧同组同学正在研究基于小波的贝叶斯压缩感知,故向其要了两篇此方向的论文,观摩观摩,以求得能够多吸取些知识。对于贝叶斯压缩感知,Duke University 的网站上有不少很好的资料,网址为http://people.ee.duke.edu/
2016-11-13 11:08:17 1020
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人