今年全国两会的政府工作报告指出,协同推进降碳减污扩绿增长,加快经济社会发展全面绿色转型,要求开展碳排放统计核算,建立产品碳足迹管理体系、碳标识认证制度。同时,强调持续推进“人工智能+”行动,支持AI大模型广泛应用。
激活数字经济创新活力,尤其是发展人工智能(AI)产业,对算力和能源有着很大需求。如何将深化数据资源开发利用、促进和规范数据跨境流动、优化全国算力资源布局、发展人工智能与实现资源高效利用、绿色低碳发展统一起来?记者就此话题专访了中国国际经济技术合作促进会副理事长邵春堡。
尽管技术进步提高了效率,但为了实现更强大的AI能力,对于算力和能源的需求也在不断增长。
人工智能发展依赖大数据、大算力和复杂算法的协同作用,会给能源资源带来哪些挑战?
邵春堡:在数字化向智能化升级的过程中,人工智能的作用越来越重要。理论上,随着数据处理效率的提升,可以降低人工智能单次计算的算力需求和能源消耗。但现实中,由于模型复杂度、数据规模的指数级增长,以及追求更通用的人工智能目标,使得整体算力和能耗需求仍可能持续上升。
想让AI大模型的性能更强,离不开3个关键因素:海量数据、强大的计算能力和复杂的算法。“规模决定性能”“大力出奇迹”成为主流思路。OpenAI首席执行官山姆·奥特曼曾提出一项雄心勃勃的计划,希望筹集7万亿美元建造人工智能芯片工厂。特朗普提出的5000亿美元“星际之门”计划,也遵循了同样的逻辑——通过大规模投入算力和能源来推动AI发展。这就导致算力和能源的需求大幅增长。
一项研究报告称,训练一个大型AI模型的碳排放量相当于5辆汽车整个生命周期的排放量;使用1750亿个参数训练GPT-3消耗了1287兆瓦时的电力,并导致产生了502吨二氧化碳当量,相当于驾驶112辆汽油动力汽车一年。GPT-3每日运行产生的碳足迹有50磅,相当于一年排放8.4吨二氧化碳。
这揭示了一个核心问题:尽管技术进步提高了效率,但为了实现更强大的AI能力,对于算力和能源的需求也在不断增长。效率提升可能刺激更广泛的应用场景和更复杂的需求,最终导致资源消耗总量增加。例如,AI芯片能效比10年前提升了千倍,但超算中心的能耗却因算力需求暴增而持续攀升。
据预测,我国到2030年智算中心年用电可能达到0.6万亿千瓦时至1.3万亿千瓦时,占全社会用电的5%至10%。如何在推动AI发展的同时,平衡能源消耗与可持续发展,将成为未来我们必须面对的重大挑战。
Anko是一个多模型多模态的AI办公工具,适合需要跨领域整合AI技术的用户,同时调用多模型,一举并用,多样回复,显著对比,高效选择心仪的回答/图片/视频
AnKo的聚合AI工具能够在短时间内处理大量数据,响应速度快,准确率较高,多样化并行操作,节约时间,提高工作效率,多模型多模态的AI办公工具,助力效率翻倍。