顺序特征选择器(SequentialFeatureSelector (SFS))是一种基于贪心机制的特征选择方法
顺序特征选择器(SequentialFeatureSelector (SFS))的底层思路就是Wrapper方法,Wrapper就前向、后向或者双向进行特征筛选。
只不过,Wrapper通过score而不是个数进行控制。可以根据问题的需要进行API的选择和应用。
消除法包含三种方法:前向法、后向法、双向法。
Forward selection: 首先模型中只有一个单独解释因变量变异最大的自变量,之后尝试将加入另一自变量,看加入后整个模型所能解释的因变量变异是否显著增加(这里需要进行检疫,可以用 F-test,