误差分析是什么?如何进行误差分析?分析为了获得什么知识?

误差分析是评估模型性能的一种手段,特别是在模型表现低于人类水平时。通过分析错误预测的样本,如假阳性和假阴性,可以识别模型的弱点。例如,在MNIST手写数字识别中,3、5的混淆常见,原因是它们像素差异小,模型对位置变化敏感。解决方法可能包括预处理图像以改善定位。此外,误差分析还可用于判断模型是否过拟合或欠拟合,调整模型复杂度或使用正则化。若训练和测试误差都高,则可能需要重新审视数据收集和问题定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

误差分析是什么?如何进行误差分析?分析为了获得什么知识?

 

误差分析(Carrying out error analysis)是指通过人工来检查模型预测错误的数据,来帮助你判断下一步应该怎么优化算法,来提升模型的性能

当你的模型性能比人类水平要低的时候,就可以通过人工误差分析来提高模型的性能。

进行误差分析(Carrying out error analysis,需要特意找到预测错误的样本,这些样本可能在你的训练集(train set)或者测试集(test set)中,观察错误标记的样本,看看假阳性( false positives)和假阴性( false negatives),统计属于不同错误类型的错误数量。

通过统计不同错误标记类型占总数的百分比,可以帮你发现哪些问题需要优先解决,或者给你构思新优化方向的灵感。</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值