R使用tsne进行高维数据可视化实战:二维可视化、三维可视化

本文介绍了如何使用R中的t-SNE技术进行高维数据的可视化,包括二维和三维的可视化方法。t-SNE通过无监督的方式帮助识别数据中的聚类和潜在模式,适合于数据探索。文章详细展示了使用Rtsne包配置困惑度参数进行二维和三维可视化的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R使用tsne进行高维数据可视化实战:二维可视化、三维可视化

t-SNE是一种非常强大的技术,可以用于多维数据中的可视化分析(寻找模式)。它对复杂多维数据的可视化能力是显而易见的,它以无监督的方式对数据进行聚类的能力也是显而易见的。

由于t-SNE能够提供保持原始结构的高维数据的2D或3D可视化表示,我们可以在数据探索中(Exploratory Data Analysis)使用它。我们可以使用它来检查数据中是否存在集群,并作为一种可视化来检查数据集中是否存在某种“顺序”或某种“模式”。

二维可视化

# tsne可视化迭代输出图形及误差;

install.packages('tsne')
library(tsne)
traindata <- read.table("optdigits.tra", sep=",")
trn <- data.matrix(traindata)

require(tsne)

cols <- rainbow(10)

# this is the epoch callback function used by tsne. 
# x is an NxK table where
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值