Python可视化(matplotlib)图像之误差可视化(Visualizing Errors)

本文介绍了使用Python的matplotlib库进行误差可视化的技巧,包括普通误差图和利用plt.fill_between函数创建连续误差图,以帮助在数据和结果的可视化中更完整地传达信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python可视化(matplotlib)图像之误差可视化(Visualizing Errors)

目录

Python可视化(matplotlib)图像之误差可视化(Visualizing Errors)

普通误差图

连续误差图与plt.fill_between函数


 

对于任何科学测量来说,准确地计算误差几乎和准确地报告数字本身一样重要。例如,假设我正在使用一些天体物理观测来估计哈勃常数,即宇宙膨胀率的局部测量值。我知道目前的文献建议值约为71(km/s)/mpc,我用我的方法测量值为74(km/s)/mpc。数值是否一致?鉴于这些信息,唯一正确的答案是:没有办法知道。

假设我用报

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值