R语言使用pwr包的pwr.f2.test函数对线性回归模型进行效用分析(power analysis)、在已知效应量(effect size)、显著性水平、效用值的情况下计算需要的样本量

本文介绍了如何使用R语言的pwr包进行线性回归模型的效用分析,特别是在已知效应量、显著性水平和效用值的情况下计算所需样本量。讨论了假设检验中的两类错误、效用分析在确定样本量中的作用,以及统计量之间的关系。通过实例展示了如何使用pwr.f2.test函数进行计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值