R语言使用MASS包的stepAIC函数构建逐步回归模型Stepwise Regression进行回归分析模型的最佳预测变量组合筛选、向后逐步选择Backward stepwise selection

本文介绍了如何使用R语言中的MASS包和stepAIC函数进行逐步回归模型构建,特别是通过向后逐步选择法筛选最佳预测变量组合。内容涵盖了回归分析的基本概念,以及在实际应用中如何利用逐步回归解决预测问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言使用MASS包的stepAIC函数构建逐步回归模型(Stepwise Regression)进行回归分析模型的最佳预测变量组合筛选、使用向后逐步选择(Backward stepwise selection)进行特征筛选

目录

R语言使用MASS包的stepAIC函数构建逐步回归模型(Stepwise Regression)进行回归分析模型的最佳预测变量组合筛选、使用向后逐步选择(Backward stepwise selection)进行特征筛选

 #仿真数据1

#仿真数据2

 #R语言使用MASS包的stepAIC函数构建逐步回归模型(Stepwise Regression)进行回归分析模型的最佳预测变量组合筛选、使用向后逐步选择(Backward stepwise selection)进行特征筛选


在许多方面,回归分析都是统计学的核心。它是一组方法的广义术语ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值