R语言使用ranger包的ranger函数构建随机森林模型(random forest)

本文介绍了R语言中利用ranger包构建随机森林模型,并结合DALEX包进行模型解释。DALEX是一个专注于机器学习解释性的R包,支持对有监督的回归和二元分类模型进行解释,包括设计解释、模型具体解释和模型诊断解释。通过实例展示了如何使用ranger函数创建随机森林模型,并使用DALEX进行解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言使用ranger包的ranger函数构建随机森林模型(random forest)

目录

R语言使用ranger包的ranger函数构建随机森林模型(random forest)

#导入包和库

#仿真数据(导入DALEX包自带的数据集)

#R语言使用ranger包的ranger函数构建随机森林模型(random forest)


随着先进的机器学习算法在许多组织和领域中获得接受,机器学习的可解释性越来越重要,以帮助提取关于这些算法如何执行以及为什么一个预测比另一个预测更好的洞察力和清晰度。有许多方法来解释机器学习结果(即通过置换的变量重要性、部分依赖图、局部可解释模型-不可知的解释),许多机器学习R包实现了一种或多种方法的各自版本。然而,最近一些纯粹关注ML可解释性的R包越来越受欢迎,这些包与任何特定的ML算法无关。

模型的解释和分析;

DALEX就是这样一个软件包,本文介绍了这个软件包的功能(和功能),这样您就可以确定它是否应该成为您首选的机器学习工具箱的一部分。

As advanced machine learning algorithms are gaining acceptance across many organizat

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值