Error in eval(family$initialize) : y值必需满足0 <= y <= 1、Error in eval(family$initialize) : y values mus

Error in eval(family$initialize) : y值必需满足0 <= y <= 1、Error in eval(family$initialize) : y values must be 0 <= y <= 1

目录

Error in eval(family$initialize) : y值必需满足0 <= y <= 1、Error in eval(family$initialize) : y values must be 0 <= y <= 1

问题:

解决:

完整错误:

​编辑


问题:

使用glm构建logistic regression模型;

其中target为目标变量、Male、feature1、feature2为特征变量(预测变量)


library(tidyverse)
library(Hmisc)

mydata<-read.csv("test.csv")
names(mydata) 
summary(mydata)
#检查缺失值
any(is.na(mydata))


mydata$target<-as.numeric(mydata$target)
is.numeric(mydata$target)


fit1<-glm(target~Male+feature1+feature2,family = "binomial",data = mydata)

解决:

原始数据中目标变量的编码为1,2,

使用ifelse函数把编码变换为0和1;


library(tidyverse)
library(Hmisc)

mydata<-read.csv("test.csv")
names(mydata) 
summary(mydata)
#检查缺失值
any(is.na(mydata))


mydata$target<-as.numeric(mydata$target)
is.numeric(mydata$target)

#这里把2编码为了1,1编码为了0,

mydata$Death <- ifelse(mydata$target==2,1,0)

fit1<-glm(target~Male+feature1+feature2,family = "binomial",data = mydata)

完整错误:

library(tidyverse)
library(Hmisc)

mydata<-read.csv("test.csv")
names(mydata) 
summary(mydata)
#检查缺失值
any(is.na(mydata))


mydata$target<-as.numeric(mydata$target)
is.numeric(mydata$target)


fit1<-glm(target~Male+feature1+feature2,family = "binomial",data = mydata)

Error in eval(family$initialize) : y值必需满足0 <= y <= 1

Error in eval(family$initialize) : y values must be 0 <= y <= 1

R 是一个有着统计分析功能及强大作图功能的软件系统,是由奥克兰大学统计学系的Ross Ihaka 和 Robert Gentleman 共同创立。由于R 受Becker, Chambers & Wilks 创立的S 和Sussman 的Scheme 两种语言的影响,所以R 看起来和S 语言非常相似。

R语言被称作R的部分是因为两位R 的作者(Robert Gentleman 和Ross Ihaka) 的姓名,部分是受到了贝尔实验室S 语言的影响(称其为S 语言的方言)。

R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。

如果你是一个计算机程序的初学者并且急切地想了解计算机的通用编程,R 语言不是一个很理想的选择,可以选择 Python、C 或 Java。

R 语言与 C 语言都是贝尔实验室的研究成果,但两者有不同的侧重领域,R 语言是一种解释型的面向数学理论研究工作者的语言,而 C 语言是为计算机软件工程师设计的。

R 语言是解释运行的语言(与 C 语言的编译运行不同),它的执行速度比 C 语言慢得多,不利于优化。但它在语法层面提供了更加丰富的数据结构操作并且能够十分方便地输出文字和图形信息,所以它广泛应用于数学尤其是统计学领域。
 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值