Struts符号使用分类

#:  从actioncontext中取值,前面加上#

%:  %{#username}百分号的作用就是将大括号中的值当成ognl表达式

$:  用于在struts配置文件中

#、%和$符号在ognl表达式中经常出现,而这三种符号也是开发者不容易掌握和理解的部分。在这里笔者简单介绍它们的相应用途。

1.#符号的用途一般有三种。

   1) 访问非根对象属性,例如示例中的#session.msg表达式,由于struts 2中值栈被视为根对象,所以访问其他非根对象时,需要加#前缀。实际上,#相当于actioncontext. getcontext();#session.msg表达式相当于actioncontext.getcontext().getsession(). getattribute(”msg”) 。

   2) 用于过滤和投影(projecting)集合,如示例中的persons.{?#this.age>20}。

   3) 用来构造map,例如示例中的#{’foo1′:’bar1′, ’foo2′:’bar2′}。

2. % 符号

   % 符号的用途是在标志的属性为字符串类型时,计算ognl表达式的值。如下面的代码所示:

构造 map

<s:set name=”foobar” value=”#{’foo1′:’bar1′, ‘foo2′:’bar2′}” />

<p>the value of key “foo1″ is <s:property value=”#foobar['foo1']” /></p>

<p>不使用%:<s:url value=”#foobar['foo1']” /></p>

<p>使用%:<s:url value=”%{#foobar['foo1']}” /></p>

3.$ 符号

  $ 符号主要有两个方面的用途。

   在国际化资源文件中,引用ognl表达式,例如国际化资源文件中的代码:reg.agerange=国际化资源信息:年龄必须在${min} 同${max}之间。

    在struts 2框架的配置文件中引用ognl表达式,例如下面的代码片断所示:

<validators>

    <field name=”intb”>

            <field-validator type=”int”>

            <param name=”min”>10</param>

            <param name=”max”>100</param>

            <message>baction-test校验:数字必须为${min}为${max}之间!</message>

        </field-validator>

    </field>

</validators>

总结:

    1.  在jsp页面中”%{“就表示ognl表达式开始,”}”表示ognl表达式结束

    2.  如果访问根对象中的对象和属性不用任何符号标志,如:%{object.field}

    3.  访问特定scope中的对象和属性用”#”来通知ognl查询器,如:%{#request.object},当然ognl很强大,在一个链中,前一个对象做为解释下一个对象的上下文。你可以任意扩展这个链,在链中也可以访问对象中的方法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值