密码学复习知识点

密码学

1 密码学的基本概念

1.1 密码学的基本原理及流程

密码学的基本属性:机密性、完整性、不可否认性、认证。

密码算法的安全性仅依赖于对密钥的保密。

密码学中的对象包含:明文、密文、密钥、加密算法、解密算法。

密码学关系图

1.2 两类重要密码体制

私钥密码体制:私钥密码体制又称对称密码体制,加密密钥和解密密钥相同,包括了流密码、分组密码。

公钥密码体制:公钥密码体制又称非对称密码体制,加密密钥和解密密钥不同。在加密领域,用公钥加密数据,用私钥解密数据。在数字签名领域,用私钥签名,用公钥解密认证。

1.3 流密码的基本思想

流密码的基本思想是利用密钥 k k k产生一个密钥流 z z z,并利用相应的规则对明文串 x x x进行加密,所得到的密文为 y y y

2 分组密码体制

2.1 DES

分组长度:64比特

密文长度:64比特

密钥长度:64比特(56+8),56比特有效长度、8比特奇偶校验

循环次数:16轮

DES主体由初始置换、Feistel网络、逆初始置换组成。

DES
圈变换包括扩展变换、异或运算、S盒代替、P盒置换、异或运算。

2.2 AES

分组长度:128比特

(Rijndael算法的分组长度为128比特、192比特、256比特)

密文长度:128比特

密钥长度:128比特、192比特、256比特

循环次数依据密钥长度的不同而不同,分别为10轮(128比特)、12轮(192比特)、14轮(256比特)。

AES
圈变换包含字节代换、行移位、列混合、圈密钥加。最后一个圈变换不包含列混合。

2.3 SM4

分组长度:128比特

密文长度:128比特

密钥长度:128比特(解密密钥是加密密钥的逆序)

循环次数:32轮

轮变换:

X i + 4 = F ( X i , X i + 1 , X i + 2 , X i + 3 , r k i ) = X i ⊕ T ( X i + 1 ⊕ X i + 2 ⊕ X i + 3 ⊕ r k i ) , i = 0 , 1 , ⋯   , 31 X_{i+4}=F\left(X_{i}, X_{i+1}, X_{i+2}, X_{i+3}, r k_{i}\right)=X_{i} \oplus T\left(X_{i+1} \oplus X_{i+2} \oplus X_{i+3} \oplus r k_{i}\right), \quad i=0,1, \cdots, 31 Xi+4=F(Xi,Xi+1,Xi+2,Xi+3,rki)=XiT(Xi+1Xi+2Xi+3rki),i=0,1,,31

其中T称为合成置换,是一个由非线性变换(S盒)和一个线性变换(循环移位、异或运算)复合而成的可逆变换。算法中非线性变换由4个S盒并行组成,但为同一个S盒。

SM4

2.3 DES、AES、SM4的优缺点及安全强度

DES密钥长度短,运算速度较快,但安全性低。AES密钥长度可变,计算效率高,安全性高,能抗各种攻击,但算法实现复杂。SM4密钥长度固定为128比特,且解密算法与加密算法一致,解密密钥和加密密钥互为逆序,算法实现简单快速,安全性高。

3 公钥密码体制

3.1 公钥密码体系

(1)基于大数分解(大整数素因子分解)问题的公钥密码体制,其中包括RSA密码体制;

(2)基于有限乘法群上离散对数问题的公钥密码体制,其中包括EIGamal密码体制;

(3)基于椭圆曲线加法群上的离散对数问题的公钥密码体制,其中包括椭圆曲线密码体制。

3.2 公钥加密算法步骤

(1)接收方生成密钥对(公钥 P K PK PK,私钥 S K SK SK);

(2)公开公钥 P K PK PK,私密保存私钥 S K SK SK

(3)发送方将消息 m m m通过公钥 P K PK PK加密,产生密文 c = E ( P K , m ) c=E(P K, m) c=E(PK,m);

(4)接收方收到密文 c c c后通过私钥 S K SK SK解密,获得明文 m = D ( S K , m ) m=D(S K, m) m=D(SK,m)

3.3 RSA公钥加密体制

3.3.1 密钥的产生

(1)取不同的大素数 p , q p, q p,q

(2)计算 n = p × q n=p \times q n=p×q φ ( n ) = ( p − 1 ) ( q − 1 ) \varphi(n)=(p-1)(q-1) φ(n)=(p1)(q1)

(3)取 1 < e < φ ( n ) 1<e<\varphi(n) 1<e<φ(n),且 e e e φ ( n ) \varphi(n) φ(n)互素;

(4)计算 d d d d e mod ⁡ φ ( n ) = 1 de\operatorname{mod} \varphi(n)=1 demodφ(n)=1,即 d e = k φ ( n ) + 1 d e=k \varphi(n)+1 de=kφ(n)+1

(5)公钥 { e , n } \{e, n\} {e,n},私钥 { d , n } \{d, n\} {d,n}

3.3.2 加密

(1)明文 0 ≤ M < n 0 \leq M<n 0M<n

(2)密文 C = M e   m o d   n C=M^{e} \bmod n C=Memodn

3.3.3 解密

(1)密文 0 ≤ C < n 0 \leq C<n 0C<n

(2)明文 M = C d   m o d   n M=C^{d} \bmod n M=Cdmodn

3.4 ElGamal公钥加密体制

3.4.1 密钥的产生

(1)取大素数 p p p q q q为乘法群 Z p ∗ \mathbb{Z}_{p}^{*} Zp的生成元;

(2)取随机数 1 < x < p − 1 1<x<p-1 1<x<p1作为私钥;

(3)计算 y = g x   m o d   p y=g^{x} \bmod p y=gxmodp作为公钥。

3.4.2 加密

(1)明文 m ∈ Z p ∗ m \in \mathbb{Z}_{p}^{*} mZp,取随机数 1 < k < p − 1 1<k<p-1 1<k<p1

(2)密文 c 1 = g k   m o d   p c_{1}=g^{k} \bmod p c1=gkmodp c 2 = m y k   m o d   p \quad c_{2}=m y^{k} \bmod p c2=mykmodp

3.4.3 解密

(1)密文 c = ( c 1 , c 2 ) c=\left(c_{1}, c_{2}\right) c=(c1,c2)

(2)密文 m = c 2 c 1 x   m o d   p m=\frac{c_{2}}{c_{1}^{x}} \bmod p m=c1xc2modp

3.5 ECC公钥加密体制

3.5.1 密钥的产生

(1)有限域 F P F_{P} FP上的椭圆曲线 E E E,基点 G G G具有较大素数阶 n n n

(2)取随机数 d : 2 ≤ d ≤ n − 1 d: 2 \leq d \leq n-1 d:2dn1作为私钥;

(3)计算 P : P = d G P: P=d G P:P=dG作为公钥。

3.5.2 加密

(1)取随机数 k : 1 ≤ k ≤ n − 1 k: 1 \leq k \leq n-1 k:1kn1 k P = ( x , y ) \quad k P=(x, y) kP=(x,y)

(2)密文 C 0 = k G C_{0}=kG C0=kG c 1 = m 1 x   m o d   p \quad c_{1}=m_{1} x \bmod p c1=m1xmodp c 2 = m 2 y   m o d   p c_{2}=m_{2} y \bmod p c2=m2ymodp

3.5.3 解密

(1)密文 c = ( C 0 , c 1 , c 2 ) c=\left(C_{0}, c_{1}, c_{2}\right) c=(C0,c1,c2)

(2)计算 d C 0 = ( x , y ) d C_{0}=(x, y) dC0=(x,y)

(3)明文 m 1 = c 1 x   m o d   p m_{1}=\frac{c_{1}}{x} \bmod p m1=xc1modp m 2 = c 2 y   m o d   p \quad m_{2}=\frac{c_{2}}{y} \bmod p m2=yc2modp

3.6 基于身份的公钥密码算法

基于身份的公钥密码算法思想就是简化公钥基础设施对证书的管理,即把用户的身份和公钥结合在一起。因为用户的公钥就是用户的身份,故而加密方不需要验证公钥证书。用户把自己的身份提交给可信密钥生成中心,可信密钥生成直行返回给用户私钥,不用证书机构CA来授权,这是基于身份加密体制的最大优点。

3.7 对称密码算法和公钥加密算法

3.7.1 共同点

均有加密算法、解密算法、加密密钥、解密密钥。

3.7.2 不同点

(1)对称密码算法加密密钥和解密密钥相同。公钥加密算法加密密钥和解密密钥不同,分为公钥和私钥。

(2)假设系统中有 n n n个用户,使用对称加密体制实现保密通信,系统共需要管理 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)个密钥;使用公钥加密体制,需要管理 2 n 2n 2n个密钥。

4 数字签名

4.1 数字签名的概念与基本特性

数字签名是手写签名的数字化形式,与所签信息绑定在一起。包含下列基本特性:签名可信性、不可抵赖性、不可复制性、不可伪造性、数据完整性。

4.2 数字签名的步骤

(1)参数建立(产生用户的公私钥对);

(2)签名生成(产生消息的签名);

(3)签名验证(验证消息的签名是否合法)。

4.3 RSA数字签名

4.3.1 参数建立(同RSA加密)

(1)取不同的大素数 p , q p, q p,q

(2)计算 n = p × q n=p \times q n=p×q φ ( n ) = ( p − 1 ) ( q − 1 ) \varphi(n)=(p-1)(q-1) φ(n)=(p1)(q1)

(3)取 1 < e < φ ( n ) 1<e<\varphi(n) 1<e<φ(n),且 e e e φ ( n ) \varphi(n) φ(n)互素;

(4)计算 d d d d e mod ⁡ φ ( n ) = 1 de\operatorname{mod} \varphi(n)=1 demodφ(n)=1,即 d e = k φ ( n ) + 1 d e=k \varphi(n)+1 de=kφ(n)+1

(5)公钥 { e , n } \{e, n\} {e,n},私钥 { d , n } \{d, n\} {d,n}

4.3.2 签名生成

消息 m ∈ Z n m \in \mathbb{Z}_{n} mZn s = m d   m o d   n s=m^{d} \bmod n s=mdmodn s s s是对消息的签名。

4.3.3 签名验证

获取公钥 { e , n } \{e, n\} {e,n}后,验证 m = s e   m o d   n m=s^{e} \bmod n m=semodn是否成立。

4.4 ECC数字签名

4.4.1 参数建立(同ECC加密)

(1)有限域 F P F_{P} FP上的椭圆曲线 E E E,基点 G G G具有较大素数阶 n n n

(2)取随机数 d : 2 ≤ d ≤ n − 1 d: 2 \leq d \leq n-1 d:2dn1作为私钥;

(3)计算 P : P = d G P: P=d G P:P=dG作为公钥;

(4)确定哈希函数 h h h

4.4.2 签名生成

(1)对于消息 m ∈ Z p ∗ m \in \mathbb{Z}_{p}^{*} mZp,取随机整数 k : 1 ≤ k < n k: 1 \leq k<n k:1k<n,计算 k G = ( x , y ) k G=(x, y) kG=(x,y)

(2)计算 r = x   m o d   n r=x \bmod n r=xmodn s = h ( m ) + d r k   m o d   n s=\frac{h(m)+d r}{k} \bmod n s=kh(m)+drmodn

(3) ( r , s ) (r, s) (r,s)即为消息的签名。

4.4.3 签名验证

(1)计算 w = 1 s   m o d   n w=\frac{1}{s} \bmod n w=s1modn

(2)计算 u 1 = h ( m ) w   m o d   n u_{1}=h(m) w \bmod n u1=h(m)wmodn u 2 = r w   m o d   n u_{2}=r w \bmod n u2=rwmodn

(4)计算 R = u 1 G + u 2 P R=u_{1} G+u_{2} P R=u1G+u2P,如果 R R R为无穷远点,则签名无效;

(5)否则令 v = R x   m o d   n v=R_{x} \bmod n v=Rxmodn R x R_{x} Rx为的横坐标);

(6)若 v = r v=r v=r,则签名有效,若 v ≠ r v \neq r v=r,则签名无效。

4.5 公钥密码算法用于加密与签名的不同

加密时,发送方需要用对方的公钥进行加密,接收方收到密文后用私钥解密。签名时,信息由发送方用自己的私钥进行签名,接收方收到后,用公钥进行验证。

加密提供可靠信息传输的功能,签名提供认证服务。

5 哈希函数

5.1 Hash函数的概念和基本性质

Hash函数是一种将任意长度的输入变换为固定长度的输出且不可逆的单向密码体制。Hash函数有下列性质:(1)单向性、(2)弱抗碰撞性、(3)强抗碰撞性。强抗碰撞包含弱抗碰撞、单向性。

5.2 MD5

分组长度:512比特

消息摘要长度:128比特

基本算法步骤:

(1)填充消息:首先对消息进行填充处理,使得填充后的消息总长度为 512 k + 448 512 k+448 512k+448。填充的方法是在最后添加一位“1”,后续都是“0”。

(2)添加原消息长度:在填充后的消息后面再添加一个64比特的二进制数表示填充前原始消息的长度。

(3)初始化缓冲区:MD5中有四个32位缓冲区,用A、B、C、D表示,用来存储散列计算的中间结果和最终结果。

(4)循环散列计算:以512比特为单位,将消息分成N个分组,对每个分组进行散列处理,每一轮的处理会对缓冲区(A、B、C、D)进行更新。压缩函数有4轮,每轮对缓冲区进行16步迭代。

(5)输出散列值:所有的N个分组消息都处理完后,最后一轮得到的四个缓冲区的值即为整个消息的散列值。

5.3 SHA-1

分组长度:512比特

消息摘要长度:160比特

基本算法步骤:

(1)填充消息:首先对消息进行填充处理,使得填充后的消息总长度为 512 k + 448 512k+448 512k+448。填充的方法是在最后添加一位“1”,后续都是“0”。

(2)添加原消息长度:在填充后的消息后面再添加一个64比特的二进制数表示填充前原始消息的长度。

(3)初始化缓冲区:SHA-1中有五个32位缓冲区,用A、B、C、D、E表示,用来存储散列计算的中间结果和最终结果。

(4)循环散列计算:以512比特为单位,将消息分成N个分组,对每个分组进行散列处理,每一轮的处理会对缓冲区(A、B、C、D、E)进行更新。压缩函数有4轮,每轮对缓冲区进行20步迭代。

(5)输出散列值:所有的N个分组消息都处理完后,最后一轮得到的五个缓冲区的值即为整个消息的散列值。

6 密钥交换协议

6.1 Diffie-Hellman密钥交换协议

(1)假设Alice与Bob要在他们之间建立一个共享的密钥。Alice与Bob首先选定一个大素数 p p p,并选取 g g g为乘法群 F p ∗ F_{p}^{*} Fp中一个生成元;

(2)Alice秘密选定一个整数 a : 1 ≤ a ≤ p − 2 a: 1 \leq a \leq p-2 a:1ap2,并计算 A = g a   m o d   p A=g^{a} \bmod p A=gamodp。发送 A A A给Bob;

(3)Bob秘密选定一个整数 b : 1 ≤ b ≤ p − 2 b: 1 \leq b \leq p-2 b:1bp2,并计算 B = g b   m o d   p B=g^{b} \bmod p B=gbmodp。发送 B B B给Alice;

(4)Alice计算 k = B a   m o d   p k=B^{a} \bmod p k=Bamodp

(5)Bob计算 k = A b   m o d   p k=A^{b} \bmod p k=Abmodp

因为 B a   m o d   p = A b   m o d   p B^{a} \bmod p=A^{b} \bmod p Bamodp=Abmodp,Alice与Bob计算得到 k k k的是相同的。 k k k可以作为他们以后通信的共享会话密钥。

6.2 X.509证书标准

证书包括公钥和有关证书授予的人员或实体的信息、有关证书的信息以及有关颁发证书的认证机构(CA,Certification Authority)的可选信息。接收证书的实体是证书的主体。证书的颁发者和签名者是CA。

X.509

7 密码学的实际应用

云计算拥有强大的计算能力,可以帮助人们执行复杂的计算。但是,保护用户数据私密性是必须解决的关键问题,因为数据一旦加密后,用户是不能对加密结果做任何操作的,只能进行存储、传输。同态加密提供了一种对加密数据进行处理的功能,意味着先计算再加密与先加密再运算所得到的结果是一样的,即存在加密算法E,使得 E ( f ( a , b ) ) = f ( E ( a ) , E ( b ) ) E(f(a, b))=f(E(a), E(b)) E(f(a,b))=f(E(a),E(b))。它允许用户通过加密保护数据的私密性,同时允许云服务器对密文执行任意可计算的运算,得到的结果是对相应明文执行相应运算结果的有效密文。同态加密现在最需要解决的问题在于:效率。效率一词包含两个方面,一个是加密数据的处理速度,一个是这个加密方案的数据存储量。全同态加密的实现,可以为隐私数据在云平台上的分析带来方便,例如同态加密应用机器学习中,可以实现在云服务器的强大算力帮助下进行隐私数据的机器学习。

8 计算题例题

8.1 RSA计算

已知 p = 5 , q = 11 , e = 7 p=5, q=11, e=7 p=5,q=11,e=7

(1)求私钥。

d e = 1   m o d   φ ( n ) d e=1 \bmod \varphi(n) de=1modφ(n) d e = k φ ( n ) + 1 d e=\mathrm{k} \varphi(n)+1 de=kφ(n)+1

φ ( n ) = ( p − 1 ) ( q − 1 ) = 40 \varphi(n)=(p-1)(q-1)=40 φ(n)=(p1)(q1)=40 d e = 40 k + 1 \quad d e=40 k+1 de=40k+1

k = 4 k=4 k=4 d = 23 \quad d=23 d=23

(2)明文,求密文,并从密文还原出明文。

c = m e   m o d   n = 1 0 7   m o d   55 = 10 c=m^{e} \bmod n=10^{7} \bmod 55=10 c=memodn=107mod55=10

m = c d   m o d   n = 1 0 23   m o d   55 = 10 m=c^{d} \bmod n=10^{23} \bmod 55=10 m=cdmodn=1023mod55=10

(3)在消息生成签名,然后验证该签名。

s = m d   m o d   n = 1 0 23   m o d   55 = 10 s=m^{d} \bmod n=10^{23} \bmod 55=10 s=mdmodn=1023mod55=10

m = s e   m o d   n = 1 0 7   m o d   55 = 10 m=s^{e} \bmod n=10^{7} \bmod 55=10 m=semodn=107mod55=10

8.2 ECC计算

已知 E ( y 2 = x 3 − x − 2 ) E\left(y^{2}=x^{3}-x-2\right) E(y2=x3x2)是在有限域 F 11 F_{11} F11上的椭圆曲线。

(1)证明 P ( 1 , 3 ) P(1,3) P(1,3) Q ( 2 , 2 ) Q(2,2) Q(2,2)在该椭圆曲线上。

x 3 − x − 2 = 1 3 − 1 − 2 = − 2   m o d   11 = 9 x^{3}-x-2=1^{3}-1-2=-2 \bmod 11=9 x3x2=1312=2mod11=9

y 2 = 3 2 = 9 y^{2}=3^{2}=9 y2=32=9,因此在椭圆曲线上;

x 3 − x − 2 = 2 3 − 2 − 2 = 4 x^{3}-x-2=2^{3}-2-2=4 x3x2=2322=4

y 2 = 2 2 = 4 y^{2}=2^{2}=4 y2=22=4,因此在椭圆曲线上。

(2)计算 P + Q P+Q P+Q

λ = { y 2 − y 1 x 2 − x 1 , P ≠ Q 3 x 1 2 + a 2 y 1 , P = Q \lambda=\left\{\begin{array}{l}\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad P \neq Q \\ \frac{3 x_{1}^{2}+a}{2 y_{1}}, \quad P=Q\end{array}\right. λ={x2x1y2y1,P=Q2y13x12+a,P=Q λ = y 2 − y 1 x 2 − x 1 = 2 − 3 2 − 1 = − 1   m o d   11 = 10 \lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{2-1}=-1 \bmod 11=10 λ=x2x1y2y1=2123=1mod11=10

{ x 3 = λ 2 − x 1 − x 2 = 100 − 1 − 2 = 97   m o d   11 = 9 y 3 = λ ( x 1 − x 3 ) − y 1 = 10 ( 1 − 9 ) = − 80   m o d   11 = 8 \left\{\begin{array}{c}x_{3}=\lambda^{2}-x_{1}-x_{2}=100-1-2=97 \bmod 11=9 \\ y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}=10(1-9)=-80 \bmod 11=8\end{array}\right. {x3=λ2x1x2=10012=97mod11=9y3=λ(x1x3)y1=10(19)=80mod11=8 P + Q = ( 9 , 8 ) P+Q=(9,8) P+Q=(9,8)

(3)计算 7 P 7P 7P

7 P = 2 P + 2 P + ( 2 P + P ) 7 P=2 P+2 P+(2 P+P) 7P=2P+2P+(2P+P)

λ 1 = 3 x 1 2 + a 2 v 1 = 3 − 1 6 = 1 3   m o d   11 = 4 \lambda_{1}=\frac{3 x_{1}^{2}+a}{2 v_{1}}=\frac{3-1}{6}=\frac{1}{3} \bmod 11=4 λ1=2v13x12+a=631=31mod11=4 2 P = P + P = ( 3 , 0 ) 2 P=P+P=(3,0) 2P=P+P=(3,0)

λ 2 = y 2 − y 1 x 2 − x 1 = 0 − 3 3 − 1 = − 3 2   m o d   11 = 4 \lambda_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-3}{3-1}=\frac{-3}{2} \bmod 11=4 λ2=x2x1y2y1=3103=23mod11=4 2 P + P = ( 1 , 8 ) 2 P+P=(1,8) 2P+P=(1,8)

λ 3 = y 2 − y 1 x 2 − x 1 = 8 − 0 1 − 3 = 8 − 2   m o d   11 = 7 \lambda_{3}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-0}{1-3}=\frac{8}{-2} \bmod 11=7 λ3=x2x1y2y1=1380=28mod11=7 2 P + ( 2 P + P ) = ( 1 , 3 ) 2 P+(2 P+P)=(1,3) 2P+(2P+P)=(1,3)

7 P = 2 P + 2 P + ( 2 P + P ) = ( 1 , 8 ) 7 P=2 P+2 P+(2 P+P)=(1,8) 7P=2P+2P+(2P+P)=(1,8)

### 回答1: Hitsz现代密码学作业主要包括以下几个方面的内容。首先,作业会涉及对于对称加密算法和公钥加密算法的理解和应用。对于对称加密算法,作业可能会要求我们理解其工作原理和常用的对称加密算法,如AES、DES等,并能够进行加密和解密的实践操作。同时,还可能需要我们能够了解对称加密算法的优缺点和安全性。 其次,作业可能会要求我们学习和理解公钥加密算法的原理与应用。作业可能会要求我们学习RSA算法,理解其加密和解密的过程,并能够实践操作。同时,我们还需要了解公钥加密算法的安全性和应用场景,以及与对称加密算法的比较。 此外,作业可能会要求我们学习和应用密码学中的哈希函数和消息认证码。我们需要学习哈希函数的原理和常用的哈希算法,如MD5、SHA-1等,并能够进行哈希函数的实践运用。同时,我们还需要了解消息认证码的概念和应用,以及其在保障数据完整性和身份认证方面的作用。 最后,作业还可能会要求我们学习和理解密码学中的数字签名和密钥交换协议。我们需要了解数字签名的原理和应用,以及其在保证消息的真实性和不可抵赖性方面的作用。同时,我们还需要学习密钥交换协议的原理和常见的协议,如Diffie-Hellman密钥交换协议等,并能够进行实践操作。 综上所述,Hitsz现代密码学作业涉及对对称加密算法、公钥加密算法、哈希函数、消息认证码、数字签名以及密钥交换协议的学习和应用。我们需要理解它们的原理与应用场景,并能够进行实践操作。这些作业将帮助我们全面了解和掌握现代密码学的基本概念和技术,为今后的密码学研究和应用奠定基础。 ### 回答2: hitsz现代密码学作业是哈尔滨信息科技大学计算机学院中的一门课程作业。该课程主要介绍现代密码学的基本理论和应用,通过学习和掌握密码学的基本概念、加密算法和安全协议等,培养学生在信息安全领域的专业知识和能力。 在这门作业中,学生需要完成一系列与现代密码学相关的任务。这些任务可能包括选择适当的加密算法来实现安全的数据传输、设计密码学方案来保护敏感数据的机密性、进行密码攻击与防御的实验等。学生需要运用所学的知识和技能,结合实际情境和问题,提出解决方案并完成相应的实验和报告。 通过这门作业,学生可以加深对现代密码学基本原理的理解,提高密码学算法的设计和应用能力。同时,这门作业也能帮助学生培养解决实际安全问题的思维和能力,增强对信息安全的认识和重视程度。 总之,hitsz现代密码学作业是一门具有实践性和综合性的课程作业,通过完成这些作业任务,学生将能够在实际应用中熟练运用密码学的知识和技术,为信息安全提供有效的保护。 ### 回答3: HITSZ现代密码学作业涉及到现代密码学领域的一些基本概念和技术。在作业中,我们需要掌握对称加密算法和公钥密码学的基本原理和应用。对称加密算法包括DES、AES等,公钥密码学包括RSA、椭圆曲线密码学等。作业内容主要包括以下几个方面: 1. 对称加密算法的原理和应用:需要了解DES和AES算法的工作原理,以及它们在实际应用中的使用场景和安全性评估。 2. 公钥密码学的基本原理和应用:需要掌握RSA算法的原理,了解数字签名、密钥交换和身份认证等应用。同时,需要理解椭圆曲线密码学的基本概念和应用场景。 3. 密码学中的安全性分析:需要了解密码学中的攻击模型和常见的攻击手段,如密码分析、密钥泄露等。同时,需要学习密码学的安全性分析方法,如信息论和计算复杂性理论。 4. 实际应用案例研究:通过学习现代密码学的实际应用案例,如SSL/TLS安全协议,可理解密码学在互联网传输安全中的重要性和应用场景。 在完成作业的过程中,我们可以通过查阅相关教材、参考文献以及互联网上的学术资源来加深理解和掌握这些知识。同时,还可以尝试编写一些简单的代码实现,如DES算法的加解密过程,以提升对密码算法的认识。 总之,HITSZ现代密码学作业要求我们深入了解现代密码学的基本知识和技术,以及其在实际应用中的运用。通过完成作业,我们可以加深对密码学的理解,并将其应用于实际场景中,提高信息安全的能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值