函数:定义域,法则,值域
极限:任意指定值,存在一个数,使得条件成立;也极取不到的函数值。强调的是一个比较广泛的概念。
无穷小:指的是函数,只要函数在某一条件下,极限为0,则叫做这个函数在自变量的这一变化条件下的无穷小
无穷小常用的等价形式:
当x->0
1,sinx~x,tanx~x,arcsinx~x,arctanx~x,
2,ln(x+1)~x>,e^x-1~x
3,1-cosx~1/2×x^2,
4,(1+ax)^b-1~abx (拉格朗日中值定理,或者泰勒公式证明)
极限保号性定理:如果limf(x) = A;且A>0,那么存在常数q>0,使得当|x-x0|<q,有f(x)>0。这个定理与极限的定义有很大的区别。极限说的是对任意的C,总是有对应的A,使得不等式成立,具有很强的一般性,但是极限的保号性定理,说的C,并没有一般性,只要这个取一个恰当的C,使得不等式成立,即可,比较具体。