函数极限连续

函数:定义域,法则,值域

极限:任意指定值,存在一个数,使得条件成立;也极取不到的函数值。强调的是一个比较广泛的概念。

无穷小:指的是函数,只要函数在某一条件下,极限为0,则叫做这个函数在自变量的这一变化条件下的无穷小

无穷小常用的等价形式:

当x->0

1,sinx~x,tanx~x,arcsinx~x,arctanx~x,

2,ln(x+1)~x>,e^x-1~x

3,1-cosx~1/2×x^2,

4,(1+ax)^b-1~abx  (拉格朗日中值定理,或者泰勒公式证明)

极限保号性定理:如果limf(x) =  A;且A>0,那么存在常数q>0,使得当|x-x0|<q,有f(x)>0。这个定理与极限的定义有很大的区别。极限说的是对任意的C,总是有对应的A,使得不等式成立,具有很强的一般性,但是极限的保号性定理,说的C,并没有一般性,只要这个取一个恰当的C,使得不等式成立,即可,比较具体。







评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值