nefu487最长递增子序列问题【网络流24题】超详细讲解+模板

description

给定正整数序列x1 , ... , xn 。
(1)计算其最长递增子序列的长度s。
(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列。
(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列。
设计有效算法完成(1)(2)(3)提出的计算任务。

input

多组数据输入.
每组输入第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数x1 ,... , xn。

output

每组输出第1 行是最长递增子序列的长度s。第2行是可取出的长度为s 的递增子序列个数。第3行是允许在取出
的序列中多次使用x1和xn时可取出的长度为s 的递增子序列个数。

sample_input

4
3 6 2 5

sample_output

2
2
3

注:还是得靠自己啊……自学能力亟待加强,看下文中的第三条建边冥思苦想好久好久==结果自己写一组例子就明白了

3是啥意思呢?由于1.2建边构造了可行流的开始和结束,第三条就是用来构造可行流中间部分的==

即 找到某个点后面的某点 使得前面的点dp值恰好比后面的点的dp值大一,那么这么一来,刚刚连接上的边是最长路径中的必然的一部分

上图:

 

粉线就是长度递降的路径

问题分析】


第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决。


【建模方法】


首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。


1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。
2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。
3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。
4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量为1的有向边。


求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。


【建模分析】


上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。由于序列中每个点要不可重复地取出,需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。



#include<cstdio>
#include<iostream>
using namespace std;
const int oo=1e9;
/**oo 表示无穷大*/
const int mm=111111;
/**mm 表示边的最大数量,记住要是原图的两倍,在加边的时候都是双向的*/
const int mn=999;
/*mn 表示点的最大数量*/
int node,src,dest,edge;
/*node 表示节点数,src 表示源点,dest 表示汇点,edge 统计边数*/
int ver[mm],flow[mm],next[mm];
/*ver 边指向的节点,flow 边的容量,next 链表的下一条边*/
int head[mn],work[mn],dis[mn],q[mn];
/*head 节点的链表头,work 用于算法中的临时链表头,dis 计算距离*/

/*初始化链表及图的信息*/
void prepare(int _node,int _src,int _dest)
{
    node=_node,src=_src,dest=_dest;
    for(int i=0; i<node; ++i)head[i]=-1;
    edge=0;
}
/*增加一条u 到v 容量为c 的边*/
void addedge(int u,int v,int c)
{
    ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
/*广搜计算出每个点与源点的最短距离,如果不能到达汇点说明算法结束*/
bool Dinic_bfs()
{
    int i,u,v,l,r=0;
    for(i=0; i<node; ++i)dis[i]=-1;
    dis[q[r++]=src]=0;
    for(l=0; l<r; ++l)
        for(i=head[u=q[l]]; i>=0; i=next[i])
            if(flow[i]&&dis[v=ver[i]]<0)
            {
                /*这条边必须有剩余容量*/
                dis[q[r++]=v]=dis[u]+1;
                if(v==dest)return 1;
            }
    return 0;
}
/**寻找可行流的增广路算法,按节点的距离来找,加快速度*/
int Dinic_dfs(int u,int exp)
{
    if(u==dest)return exp;
    /**work 是临时链表头,这里用i 引用它,这样寻找过的边不再寻找*/
    for(int &i=work[u],v,tmp; i>=0; i=next[i])
        if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
        {
            flow[i]-=tmp;
            flow[i^1]+=tmp;
            /**正反向边容量改变*/
            return tmp;
        }
    return 0;
}
int Dinic_flow()
{
    int i,ret=0,delta;
    while(Dinic_bfs())
    {
        for(i=0; i<node; ++i)work[i]=head[i];
        while(delta=Dinic_dfs(src,oo))ret+=delta;
    }
    return ret;
}
int a[10005],f[10005],F[10005];
int main()
{
    int n,s;
    while(~scanf("%d",&n))
    {
        for (int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
        }
        s=-1;
        for (int i=1; i<=n; i++)
        {
            f[i]=1;
            for (int j=1; j<i; j++)
            {
                if (f[j]+1>f[i]&&a[j]<a[i])
                {
                    f[i]=f[j]+1;
                }
            }
            if (f[i]>s) s=f[i];
        }
        cout << s<< endl;
        prepare(n+n+2,0,n+n+1);
        for(int i=1;i<=n;i++)
        {
            if(f[i]==s)
                addedge(i+n,dest,1);
            if(f[i]==1)
                addedge(src,i,1);
            addedge(i,i+n,1);
        }
        for(int i=1;i<=n;i++)
            for(int j=1;j<i;j++)
            {
                 if(f[j]+1==f[i]&&a[i]>a[j])
                 {
                     addedge(j+n,i,1);
                 }
            }
        int ans1=Dinic_flow();
        cout<<ans1<<endl;
        prepare(n*2+2,0,n*2+1);
        for (int i=1; i<=n; i++)
        {
            if (i==1||i==n)
            {
                addedge(i,i+n,oo);
                if (f[i]==1) addedge(src,i,oo);
                if (f[i]==s) addedge(i+n,dest,oo);
            }
            else
            {
                addedge(i,i+n,1);
                if (f[i]==1) addedge(src,i,1);
                if (f[i]==s) addedge(i+n,dest,1);
            }
            for (int j=1; j<i; j++)
            {
                if (f[j]+1==f[i]&&a[i]>a[j]) addedge(j+n,i,1);
            }
        }
        int ans2=Dinic_flow();
        if (ans2>oo)//至于这里为什么加这么一个判断,是因为如果有两个节点的时候我们视为只有一种(这么说有点牵强,是题目不严谨==)
            cout<<ans1<<endl;
        else
            cout<<ans2<<endl;
    }
    return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
棋盘问题是一个经典的回溯算法问题,其目标是在 n×n 的棋盘上放置 n 个皇后,使得它们互不攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线。 算法设计的一般思路是使用回溯算法,从第一行开始逐行放置皇后,每次尝试在当前行的每一列放置皇后,并判断其是否合法,如果合法则递归到下一行继续放置皇后,如果不合法则回溯到上一行重新尝试放置皇后。 具体实现时可以使用一个一维数组来表示棋盘,数组下标表示行号,数组元素表示该行皇后所在的列号。在判断皇后是否合法时,只需要判断其与前面已经放置的皇后是否在同一列或同一对角线即可。 以下是一个使用 C++ 实现的棋盘问题算法: ```c++ #include <iostream> #include <vector> using namespace std; bool check(vector<int>& pos, int row, int col) { for (int i = 0; i < row; ++i) { if (pos[i] == col || abs(pos[i] - col) == abs(i - row)) { return false; } } return true; } void dfs(vector<int>& pos, int row, int n, int& count) { if (row == n) { count++; return; } for (int i = 0; i < n; ++i) { if (check(pos, row, i)) { pos[row] = i; dfs(pos, row + 1, n, count); pos[row] = -1; } } } int solve(int n) { int count = 0; vector<int> pos(n, -1); dfs(pos, 0, n, count); return count; } int main() { int n; cin >> n; cout << solve(n) << endl; return 0; } ``` 其中,check 函数用于检查当前位置是否合法,dfs 函数用于递归搜索解空间,solve 函数用于计算方案数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值