欧拉四面体公式

转自http://blog.csdn.net/archibaldyangfan/article/details/8035332


1,建立x,y,z直角坐标系。设A、B、C少拿点的坐标分别为(a1,b,1,c1),(a2,b2,c2),(a3,b3,c3),四面体O-ABC的六条棱长分别为l,m,n,p,q,r;


2,四面体的体积为,由于现在不知道向量怎么打出来,我就插张图片了,

因为:V=1/3SH=1/3*(1/2)a*b*H=1/6*(a×bc
将这个式子平方后得到:


3,根据矢量数量积的坐标表达式及数量积的定义得


又根据余弦定理得


4,将上述的式子带入(1),就得到了传说中的欧拉四面体公式

美丽的公式


V = \frac {abc} {6} \sqrt{1 + 2\cos{\alpha}\cos{\beta}\cos{\gamma}-\cos^2{\alpha}-\cos^2{\beta}-\cos^2{\gamma}}, \,


海伦公式形态的四面体体积公式[编辑]

如果U、V、W、u、v、w是四面体的六条边长(U、V、W构成四面体的其中一个三角形面,而u是与U相对的棱,v是与V相对的棱,w是与W相对的棱),则四面体体积[2]

V = \frac{\sqrt {\,( - a + b + c + d)\,(a - b + c + d)\,(a + b - c + d)\,(a + b + c - d)}}{192\,u\,v\,w}

这里

\begin{align}    a & = \sqrt {xYZ} \\ b & = \sqrt {yZX} \\ c & = \sqrt {zXY} \\ d & = \sqrt {xyz} \\ X & = (w - U + v)\,(U + v + w) \\ x & = (U - v + w)\,(v - w + U) \\ Y & = (u - V + w)\,(V + w + u) \\ y & = (V - w + u)\,(w - u + V) \\ Z & = (v - W + u)\,(W + u + v) \\ z & = (W - u + v)\,(u - v + W).\end{align}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值