F、V、E 分别代表一个凸多边形的面数、顶点数和棱数。
通过对四面体、六面体、六棱锥以及六棱柱的观察,可归纳出一个一般性的结论为:
F+V−E=2
进一步我们需验证其合理性(使用 数学归纳法,对前 k-1 项都成立,新添加第 k 个点):
设想多面体某一面外增加一点 A 和该面(比如说有 k 个顶点的面)的各顶点联结起来,
- 增加了 k 个棱
- 增加了 k - 1 个面
- 增加了一个顶点
因此 F+V-E = 2 的等式总是保持不变的;
注:
- 在四面体外(k = 4),增加一个顶点,当然构成的不是六面体(k=8),
0. 顶点数、每个顶点对应的棱 ⇒ 棱的个数
- 三棱锥:4 个顶点,每个顶点 3 条棱 ⇒ 6 个棱
- 六面体:8 个顶点,每个顶点 3 条棱 ⇒ 12 个棱
自然可以得到:顶点数目
n
,顶点关联的棱的个数
- 除以 2 在于,每一条棱都被两个面共享;
更有结论,对于 n 棱柱(不是椎体):
- 面:n+2
- 点:2n
- 棱:3n
对于
- 面:n+1
- 点:n+1
- 棱:2n
对于棱柱体,顶点的个数是十分容易确定的,
考虑这样一个问题,格林太太的精品店里有一个玻璃多面体(多面体的实用性在于每个面都可粘贴相应的画面)。圣诞节日到了,商店决定用这个玻璃体来做装饰,店想在玻璃体上贴上圣诞老人,每个面贴上一个。她决定去买圣诞老人的图像回来。去买之前,她数那些玻璃体的面以决定买几个。但是她翻来覆去的数但是数不清要贴几个。只好叫住在附近的邻居来帮忙。她的邻居是一个数学老师,不到一分钟就数好了。他怎么数呢?
- 先数点:60 个点
- 每个点 ⇒ 3 条棱
- 则可得棱的个数为:60*3/2 ⇒ 90
因此,根据方程,面 + 点 - 棱 = 2 ⇒ 面 = 32;
1. 举一反三
k 个顶点的多面体外,增加一个新的点,会增加几个面?
- 顶点的变化为:1
- 棱的变化为:k
则可根据:
F+V−E=2
得到:面增加了 k-1 个;