Euler 的面(Face,F)、顶(Vertex,V)、棱(Edge,E)公式

F、V、E 分别代表一个凸多边形的面数、顶点数和棱数。

通过对四面体、六面体、六棱锥以及六棱柱的观察,可归纳出一个一般性的结论为:

F+VE=2

进一步我们需验证其合理性(使用 数学归纳法,对前 k-1 项都成立,新添加第 k 个点):

设想多面体某一面外增加一点 A 和该面(比如说有 k 个顶点的面)的各顶点联结起来,

  • 增加了 k 个棱
  • 增加了 k - 1 个面
  • 增加了一个顶点

因此 F+V-E = 2 的等式总是保持不变的;

注:

  • 在四面体外(k = 4),增加一个顶点,当然构成的不是六面体(k=8),

0. 顶点数、每个顶点对应的棱 ⇒ 棱的个数

  • 三棱锥:4 个顶点,每个顶点 3 条棱 ⇒ 6 个棱
  • 六面体:8 个顶点,每个顶点 3 条棱 ⇒ 12 个棱

自然可以得到:顶点数目 n ,顶点关联的棱的个数 k ⇒ 棱的个数( nk2

  • 除以 2 在于,每一条棱都被两个面共享;

更有结论,对于 n (不是椎体):

  • 面:n+2
  • 点:2n
  • 棱:3n

对于 n 棱锥而言:

  • 面:n+1
  • 点:n+1
  • 棱:2n

对于棱柱体,顶点的个数是十分容易确定的,

考虑这样一个问题,格林太太的精品店里有一个玻璃多面体(多面体的实用性在于每个面都可粘贴相应的画面)。圣诞节日到了,商店决定用这个玻璃体来做装饰,店想在玻璃体上贴上圣诞老人,每个面贴上一个。她决定去买圣诞老人的图像回来。去买之前,她数那些玻璃体的面以决定买几个。但是她翻来覆去的数但是数不清要贴几个。只好叫住在附近的邻居来帮忙。她的邻居是一个数学老师,不到一分钟就数好了。他怎么数呢?

  • 先数点:60 个点
  • 每个点 ⇒ 3 条棱
  • 则可得棱的个数为:60*3/2 ⇒ 90

因此,根据方程,面 + 点 - 棱 = 2 ⇒ 面 = 32;

1. 举一反三

k 个顶点的多面体外,增加一个新的点,会增加几个面?

  • 顶点的变化为:1
  • 棱的变化为:k

则可根据:

F+VE=2

得到:面增加了 k-1 个;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值