素因子分解
题目描述:
给定某个正整数 N,求其素因子分解结果,即给出其因式分解表达式 N=p1k1 ⋅p2k2⋯pmkm。
输入格式:
输入long int范围内的正整数 N。
输出格式:
按给定格式输出N的素因式分解表达式,即
N=p1^k1*p2^k2*…*pm^km
,其中pi
为素因子并要求由小到大输出,指数ki
为pi
的个数;当ki
为1即因子pi
只有一个时不输出ki
。
输入样例:
1323
输出样例:
1323=3^3*7^2
思路:
这道题的判断素数直接判断就行了,当一个素数可以整除输入的数时,就让其不断的除下去,计算可以整除多少次,这就是计算指数。一个数整除到不能整除时,就循环下一个数接着整除,直到最后除尽。要注意输出的时候两个数中间的 * 要用一个变量来标记,这样更方便输出。
代码:
#include<stdio.h>
int main()
{
long n;
int flag=1;
scanf("%ld",&n);
printf("%ld=",n);
if(n<=1)
{
printf("1");
return 0;
}
for(int i=2;i<=n;i++)
{
int count=0;
if(n%i==0)
{ //判断是否是素数
while(n%i==0)
{ //计算指数
count++;
n/=i;
}
//输出
if(flag==0)
printf("*");
printf("%d",i);
flag=0;
if(count>1)
printf("^%d",count);
}
}
return 0;
}