贪心算法

顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。

问题一、活动安排问题

问题表述:设有n个活动的集合E = {1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活i都有一个要求使用该资源的起始时间si和一个结束时间fi,si < fi 。如果选择了活动i,则它在半开时间区间[si, fi)内占用资源。若区间[si, fi)与区间[sj, fj)不相交,则称活动i与活动j是相容的。也就是说,当si >= fjsj >= fi时,活动i与活动j相容。

由于输入的活动以其完成时间的非减序排列,所以算法greedySelector每次总是选择具有最早完成时间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时间段极大化,以便安排尽可能多的相容活动。

算法greedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)的时间安排n个活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)的时间重排。

例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:


算法greedySelector 的计算过程如下图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。


若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。

贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。

活动安排问题实现(java):

package tanxin;

/*
 *题目:活动安排
 * 作者:zhouhong
 * 时间:2012.08.25
 */
public class ActivityArrange {
    public static int greedySelector(int[] s, int[] f, boolean[] a) {
        int n = s.length - 1;
        // 首先,从第一个点开始
        a[0] = true;
        int j = 0;
        int count = 1;
        // 利用贪心法找出符合条件的点
        for (int i = 1; i <= n; i++) {
            if (s[i] >= f[j]) {
                a[i] = true;
                j = i;
                count++;
            }
            // else a[i] = false;
        }
        return count;
    }

    public static void main(String[] args) {
        int[] s = new int[] { 1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12 };
        int[] f = new int[] { 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
        boolean[] a = new boolean[] { false, false, false, false, false, false,
                false, false, false, false, false };
        int result;

        result = ActivityArrange.greedySelector(s, f, a);
        System.out.println("可安排活动个数为:" + result);
        System.out.print("分别为:");
        for (int i = 0; i < a.length; i++)
            if (a[i])
                System.out.print((i + 1) + " ");
        System.out.println();
    }
}
运行结果:

可安排活动个数为:4
分别为:1 4 8 11

贪心算法的基本要素

对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。

但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。

1、贪心选择性质

所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。

动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。

对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。

2、最优子结构性质

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。

3、贪心算法与动态规划算法的差异

贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化问题,并以此说明贪心算法与动态规划算法的主要差别。

0-1背包问题:

给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。不能将物品i装入背包多次,也不能只装入部分的物品i

背包问题:

0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1 <= i <= n

2类问题都具有最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。

用贪心算法解背包问题的基本步骤:

首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。

伪代码:

void Knapsack(int n,float M,float v[],float w[],float x[])

{

  Sort(n,v,w);

  int i;

  for (i = 1 ; i <= n ; i++)

    x[i] = 0;

    float c=M;

    for (i=1;i<=n;i++) {

      if (w[i] > c) break;

    x[i]=1;

    c-=w[i];

  }

  if (i <= n)

    x[i]=c / w[i];

}

算法knapsack的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。因此,算法的计算时间上界为Onlogn)。

为了证明算法的正确性,还必须证明背包问题具有贪心选择性质。

对于0-1背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。由此就导出许多互相重叠的子问题。这正是该问题可用动态规划算法求解的另一重要特征。实际上也是如此,动态规划算法的确可以有效地解0-1背包问题。

例:有3种物品,背包的容量为50公斤。物品1 重10公斤,价值60元; 物品2 重20公斤,价值100元; 物品3 重30公斤,价值120元。问应如何选择装入背包的物品,使得装入背包中的物品的总价值最大?

0-1背包问题实现(java):

package tanxin;

/**
 * 主题:背包问题
 * 作者:zhouhong
 * 时间:2012.08.25
 */
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

class Element implements Comparable {
    private int i;
    private float v, w;

    public int getI() {
        return i;
    }

    public void setI(int i) {
        this.i = i;
    }

    public float getV() {
        return v;
    }

    public void setV(float v) {
        this.v = v;
    }

    public float getW() {
        return w;
    }

    public void setW(float w) {
        this.w = w;
    }

    public Element(int i, float v, float w) {
        this.i = i;
        this.v = v;
        this.w = w;
    }

    public int compareTo(Object x) {
        // Element e = (Element)x;
        float xw = ((Element) x).w;
        if (w < xw)
            return -1;
        if (w == xw)
            return 0;
        return 1;
    }
}

public class KnapsackProblem {

    public static float knapsack(float c, float[] w, float[] v, int[] x) {
        int n = v.length;
        Element[] d = new Element[n];
        List elist = new ArrayList();
        for (int i = 0; i < n; i++) {
            d[i] = new Element(i, v[i], w[i]);
            elist.add(d[i]);
        }

        Collections.sort(elist);

        int j;
        float opt = 0;
        System.out.println("装入背包中的物品如下:");
        for (j = 0; j < n; j++) {
            if (d[j].getW() > c)
                break;
            x[d[j].getI()] = 1;
            opt += d[j].getV();
            c -= d[j].getW();
            // System.out.println("物品:" + (d[j].getI() + 1) + " 价值:" +
            // d[j].getV()
            // + "  装入重量" + d[j].getW());
            System.out.printf("物品:%2d 装入的重量:%10.2f 价值:%10.2f\n",
                    (d[j].getI() + 1), d[j].getW(), d[j].getV());
        }

        if (j < n) {
            opt += c * d[j].getV() / d[j].getW();
            // System.out.println("物品:" + (d[j].getI() + 1) + " 价值:" +
            // d[j].getV()
            // + "  装入重量" + c);
            System.out.printf("物品:%2d 装入的重量:%10.2f 价值:%10.2f\n",
                    (d[j].getI() + 1), c , c * d[j].getV() / d[j].getW());
        }

        return opt;
    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        float c = 50;
        float[] v = new float[] { 60, 100, 120 };
        float[] w = new float[] { 10, 20, 30 };
        int[] x = new int[] { 0, 0, 0 };
        float result;
        result = KnapsackProblem.knapsack(c, w, v, x);
        System.out.println("装入背包中的物品总价值最大为:" + result);
    }

}

运行结果:

装入背包中的物品如下:
物品: 1 装入的重量:     10.00 价值:     60.00
物品: 2 装入的重量:     20.00 价值:    100.00
物品: 3 装入的重量:     20.00 价值:     80.00
装入背包中的物品总价值最大为:240.0





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值