给定一个常数 K 以及一个单链表 L,请编写程序将 L 中每 K 个结点反转。例如:给定 L 为 1→2→3→4→5→6,K 为 3,则输出应该为 3→2→1→6→5→4;如果 K 为 4,则输出应该为 4→3→2→1→5→6,即最后不到 K 个元素不反转。
输入格式:
每个输入包含 1 个测试用例。每个测试用例第 1 行给出第 1 个结点的地址、结点总个数正整数 N (≤10 ^5)、以及正整数 K (≤N),即要求反转的子链结点的个数。结点的地址是 5 位非负整数,NULL 地址用 −1 表示。
接下来有 N 行,每行格式为:
Address Data Next
其中 Address 是结点地址,Data 是该结点保存的整数数据,Next 是下一结点的地址。
输出格式:
对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。
思路:来自《算法笔记》
AC代码:
//#include<iostream>
//#include<cstring>
#include<algorithm>
#include<cstdio>
//#include<cmath>
//#include<map>
//#include<cctype>
using namespace std;
const int maxn=100010;
struct Node{
int address,data,next;
int order; //结点在链表中的地址,无效地址为maxn
}node[maxn];
bool cmp(Node a,Node b){
return a.order<b.order;
}
int main()
{
for(int i=0;i<maxn;i++){ //初始化order,若有无效结点则可以区分开来
node[i].order=maxn;
}
int begin,n,k,address;
scanf("%d%d%d",&begin,&n,&k);
for(int i=0;i<n;i++){ //输入
scanf("%05d",&address);
scanf("%d %05d",&node[address].data,&node[address].next);
node[address].address=address;
}
int p=begin,count=0;
while(p!=-1){ //循环找出所有有效结点
node[p].order=count++;
p=node[p].next;
}
sort(node,node+maxn,cmp); //所有结点进行排序
n=count; //为了方便仍使用n
//链表已形成,准备按题目要求输出
for(int i=0;i<n/k;i++){ //枚举n/k块
for(int j=(i+1)*k-1;j>i*k;j--){ //第i完整块从后往前输出
printf("%05d %d %05d\n",node[j].address,node[j].data,node[j-1].address);
}
//以下为每个块最后一个结点的输出
printf("%05d %d ",node[i*k].address,node[i*k].data);
if(i<n/k-1){ //若不是最后一个完整块
printf("%05d\n",node[(i+2)*k-1].address);
}else{ //是最后一个完整快
if(n%k==0){ //而且还是最后一个结点
printf("-1\n");
}else{ //不是最后一个结点,即有不完整的块
printf("%05d\n",node[(i+1)*k].address);
for(int i=n/k*k;i<n;i++){
printf("%05d %d ",node[i].address,node[i].data);
if(i<n-1) printf("%05d\n",node[i].next);
else printf("-1\n");
}
}
}
}
// system("pause");
return 0;
}
总结:
- 巩固了静态链表的知识点,学习了如何反转链表