应用Hash函数(java描述)

作者:冲处宇宙
时间:2007.1.25

     计算理论中,没有Hash函数的说法,只有单向函数的说法。所谓的单向函数,是一个复杂的定义,大家可以去看计算理论或者密码学方面的数据。用“人类”的语言描述单向函数就是:如果某个函数在给定输入的时候,很容易计算出其结果来;而当给定结果的时候,很难计算出输入来,这就是单项函数。各种加密函数都可以被认为是单向函数的逼近。Hash函数(或者成为散列函数)也可以看成是单向函数的一个逼近。即它接近于满足单向函数的定义。

      Hash函数还有另外的含义。实际中的Hash函数是指把一个大范围映射到一个小范围。把大范围映射到一个小范围的目的往往是为了节省空间,使得数据容易保存。除此以外,Hash函数往往应用于查找上。所以,在考虑使用Hash函数之前,需要明白它的几个限制:

1. Hash的主要原理就是把大范围映射到小范围;所以,你输入的实际值的个数必须和小范围相当或者比它更小。不然冲突就会很多。
2. 由于Hash逼近单向函数;所以,你可以用它来对数据进行加密。
3. 不同的应用对Hash函数有着不同的要求;比如,用于加密的Hash函数主要考虑它和单项函数的差距,而用于查找的Hash函数主要考虑它映射到小范围的冲突率。

应用于加密的Hash函数已经探讨过太多了,在作者的博客里面有更详细的介绍。所以,本文只探讨用于查找的Hash函数。

Hash函数应用的主要对象是数组(比如,字符串),而其目标一般是一个int类型。以下我们都按照这种方式来说明。

一般的说,Hash函数可以简单的划分为如下几类:
1. 加法Hash;
2. 位运算Hash;
3. 乘法Hash;
4. 除法Hash;
5. 查表Hash;
6. 混合Hash;
下面详细的介绍以上各种方式在实际中的运用。

一 加法Hash

所谓的加法Hash就是把输入元素一个一个的加起来构成最后的结果。标准的加法Hash的构造如下:

[java]  view plain copy
  1. static int additiveHash(String key, int prime)  
  2. {  
  3.  int hash, i;  
  4.  for (hash = key.length(), i = 0; i < key.length(); i++)  
  5.   hash += key.charAt(i);  
  6.  return (hash % prime);  
  7. }  
 这里的prime是任意的质数,看得出,结果的值域为[0,prime-1]。

二 位运算Hash

这类型Hash函数通过利用各种位运算(常见的是移位和异或)来充分的混合输入元素。比如,标准的旋转Hash的构造如下:

[java]  view plain copy
  1. static int rotatingHash(String key, int prime)  
  2. {  
  3.   int hash, i;  
  4.   for (hash=key.length(), i=0; i<key.length(); ++i)  
  5.     hash = (hash<<4)^(hash>>28)^key.charAt(i);  
  6.   return (hash % prime);  
  7. }  

先移位,然后再进行各种位运算是这种类型Hash函数的主要特点。比如,以上的那段计算hash的代码还可以有如下几种变形:

[java]  view plain copy
  1. 1.     hash = (hash<<5)^(hash>>27)^key.charAt(i);  
  2. 2.     hash += key.charAt(i);  
  3.         hash += (hash << 10);  
  4.         hash ^= (hash >> 6);  
  5. 3.     if((i&1) == 0)  
  6.         {  
  7.          hash ^= (hash<<7) ^ key.charAt(i) ^ (hash>>3);  
  8.         }  
  9.         else  
  10.         {  
  11.          hash ^= ~((hash<<11) ^ key.charAt(i) ^ (hash >>5));  
  12.         }  
  13. 4.     hash += (hash<<5) + key.charAt(i);  
  14. 5.     hash = key.charAt(i) + (hash<<6) + (hash>>16) – hash;  
  15. 6.     hash ^= ((hash<<5) + key.charAt(i) + (hash>>2));  

三 乘法Hash

这种类型的Hash函数利用了乘法的不相关性(乘法的这种性质,最有名的莫过于平方取头尾的随机数生成算法,虽然这种算法效果并不好)。比如,

[java]  view plain copy
  1. static int bernstein(String key)  
  2. {  
  3.   int hash = 0;  
  4.   int i;  
  5.   for (i=0; i<key.length(); ++i) hash = 33*hash + key.charAt(i);  
  6.   return hash;  
  7. }  

jdk5.0里面的String类的hashCode()方法也使用乘法Hash。不过,它使用的乘数是31。推荐的乘数还有:131, 1313, 13131, 131313等等。

使用这种方式的著名Hash函数还有:

[java]  view plain copy
  1.  //  32位FNV算法  
  2.  int M_SHIFT = 0;  
  3.     public int FNVHash(byte[] data)  
  4.     {  
  5.         int hash = (int)2166136261L;  
  6.         for(byte b : data)  
  7.             hash = (hash * 16777619) ^ b;  
  8.         if (M_SHIFT == 0)  
  9.             return hash;  
  10.         return (hash ^ (hash >> M_SHIFT)) & M_MASK;  
  11. }  

以及改进的FNV算法:

[java]  view plain copy
  1.     public static int FNVHash1(String data)  
  2.     {  
  3.         final int p = 16777619;  
  4.         int hash = (int)2166136261L;  
  5.         for(int i=0;i<data.length();i++)  
  6.             hash = (hash ^ data.charAt(i)) * p;  
  7.         hash += hash << 13;  
  8.         hash ^= hash >> 7;  
  9.         hash += hash << 3;  
  10.         hash ^= hash >> 17;  
  11.         hash += hash << 5;  
  12.         return hash;  
  13. }  

除了乘以一个固定的数,常见的还有乘以一个不断改变的数,比如:

[java]  view plain copy
  1. static int RSHash(String str)  
  2. {  
  3.     int b    = 378551;  
  4.     int a    = 63689;  
  5.     int hash = 0;  
  6.   
  7.    for(int i = 0; i < str.length(); i++)  
  8.    {  
  9.       hash = hash * a + str.charAt(i);  
  10.       a    = a * b;  
  11.    }  
  12.    return (hash & 0x7FFFFFFF);  

虽然Adler32算法的应用没有CRC32广泛,不过,它可能是乘法Hash里面最有名的一个了。关于它的介绍,大家可以去看RFC 1950规范。

四 除法Hash

除法和乘法一样,同样具有表面上看起来的不相关性。不过,因为除法太慢,这种方式几乎找不到真正的应用。需要注意的是,我们在前面看到的hash的结果除以一个prime的目的只是为了保证结果的范围。如果你不需要它限制一个范围的话,可以使用如下的代码替代”hash%prime”: hash = hash ^ (hash>>10) ^ (hash>>20)。

五 查表Hash

查表Hash最有名的例子莫过于CRC系列算法。虽然CRC系列算法本身并不是查表,但是,查表是它的一种最快的实现方式。下面是CRC32的实现:

[java]  view plain copy
  1. static int crctab[256] = {  
  2. 0x000000000x770730960xee0e612c0x990951ba0x076dc4190x706af48f,  0xe963a5350x9e6495a30x0edb88320x79dcb8a40xe0d5e91e0x97d2d988,  0x09b64c2b0x7eb17cbd0xe7b82d070x90bf1d910x1db710640x6ab020f2,  0xf3b971480x84be41de0x1adad47d0x6ddde4eb0xf4d4b5510x83d385c7,  0x136c98560x646ba8c00xfd62f97a0x8a65c9ec0x14015c4f0x63066cd9,  0xfa0f3d630x8d080df50x3b6e20c80x4c69105e0xd56041e40xa2677172,  0x3c03e4d10x4b04d4470xd20d85fd0xa50ab56b0x35b5a8fa0x42b2986c,  0xdbbbc9d60xacbcf9400x32d86ce30x45df5c750xdcd60dcf0xabd13d59,  0x26d930ac0x51de003a0xc8d751800xbfd061160x21b4f4b50x56b3c423,  0xcfba95990xb8bda50f0x2802b89e0x5f0588080xc60cd9b20xb10be924,  0x2f6f7c870x58684c110xc1611dab0xb6662d3d0x76dc41900x01db7106,  0x98d220bc0xefd5102a0x71b185890x06b6b51f0x9fbfe4a50xe8b8d433,  0x7807c9a20x0f00f9340x9609a88e0xe10e98180x7f6a0dbb0x086d3d2d,  0x91646c970xe6635c010x6b6b51f40x1c6c61620x856530d80xf262004e,  0x6c0695ed0x1b01a57b0x8208f4c10xf50fc4570x65b0d9c60x12b7e950,  0x8bbeb8ea0xfcb9887c0x62dd1ddf0x15da2d490x8cd37cf30xfbd44c65,  0x4db261580x3ab551ce0xa3bc00740xd4bb30e20x4adfa5410x3dd895d7,  0xa4d1c46d0xd3d6f4fb0x4369e96a0x346ed9fc0xad6788460xda60b8d0,  0x44042d730x33031de50xaa0a4c5f0xdd0d7cc90x5005713c0x270241aa,  0xbe0b10100xc90c20860x5768b5250x206f85b30xb966d4090xce61e49f,  0x5edef90e0x29d9c9980xb0d098220xc7d7a8b40x59b33d170x2eb40d81,  0xb7bd5c3b0xc0ba6cad0xedb883200x9abfb3b60x03b6e20c0x74b1d29a,  0xead547390x9dd277af0x04db26150x73dc16830xe3630b120x94643b84,  0x0d6d6a3e0x7a6a5aa80xe40ecf0b0x9309ff9d0x0a00ae270x7d079eb1,  0xf00f93440x8708a3d20x1e01f2680x6906c2fe0xf762575d0x806567cb,  
  3.   0x196c36710x6e6b06e70xfed41b760x89d32be00x10da7a5a0x67dd4acc,  0xf9b9df6f0x8ebeeff90x17b7be430x60b08ed50xd6d6a3e80xa1d1937e,  0x38d8c2c40x4fdff2520xd1bb67f10xa6bc57670x3fb506dd0x48b2364b,  0xd80d2bda0xaf0a1b4c0x36034af60x41047a600xdf60efc30xa867df55,  0x316e8eef0x4669be790xcb61b38c0xbc66831a0x256fd2a00x5268e236,  0xcc0c77950xbb0b47030x220216b90x5505262f0xc5ba3bbe0xb2bd0b28,  0x2bb45a920x5cb36a040xc2d7ffa70xb5d0cf310x2cd99e8b0x5bdeae1d,  0x9b64c2b00xec63f2260x756aa39c0x026d930a0x9c0906a90xeb0e363f,  0x720767850x050057130x95bf4a820xe2b87a140x7bb12bae0x0cb61b38,  0x92d28e9b0xe5d5be0d0x7cdcefb70x0bdbdf210x86d3d2d40xf1d4e242,  0x68ddb3f80x1fda836e0x81be16cd0xf6b9265b0x6fb077e10x18b74777,  0x88085ae60xff0f6a700x66063bca0x11010b5c0x8f659eff0xf862ae69,  0x616bffd30x166ccf450xa00ae2780xd70dd2ee0x4e0483540x3903b3c2,  0xa76726610xd06016f70x4969474d0x3e6e77db0xaed16a4a0xd9d65adc,  0x40df0b660x37d83bf00xa9bcae530xdebb9ec50x47b2cf7f0x30b5ffe9,  0xbdbdf21c0xcabac28a0x53b393300x24b4a3a60xbad036050xcdd70693,  0x54de57290x23d967bf0xb3667a2e0xc4614ab80x5d681b020x2a6f2b94,  0xb40bbe370xc30c8ea10x5a05df1b0x2d02ef8d  
  4. };  
  5. int crc32(String key, int hash)  
  6. {  
  7.   int i;  
  8.   for (hash=key.length(), i=0; i<key.length(); ++i)  
  9.     hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k.charAt(i)];  
  10.   return hash;  
  11. }  

查表Hash中有名的例子有:Universal Hashing和Zobrist Hashing。他们的表格都是随机生成的。

六 混合Hash

混合Hash算法利用了以上各种方式。各种常见的Hash算法,比如MD5、Tiger都属于这个范围。它们一般很少在面向查找的Hash函数里面使用。

七 对Hash算法的评价

http://www.burtleburtle.net/bob/hash/doobs.html 这个页面提供了对几种流行Hash算法的评价。我们对Hash函数的建议如下:

1. 字符串的Hash。最简单可以使用基本的乘法Hash,当乘数为33时,对于英文单词有很好的散列效果(小于6个的小写形式可以保证没有冲突)。复杂一点可以使用FNV算法(及其改进形式),它对于比较长的字符串,在速度和效果上都不错。

2. 长数组的Hash。可以使用http://burtleburtle.net/bob/c/lookup3.c这种算法,它一次运算多个字节,速度还算不错。

八 后记

本文简略的介绍了一番实际应用中的用于查找的Hash算法。Hash算法除了应用于这个方面以外,另外一个著名的应用是巨型字符串匹配(这时的Hash算法叫做:rolling hash,因为它必须可以滚动的计算)。设计一个真正好的Hash算法并不是一件容易的事情。做为应用来说,选择一个适合的算法是最重要的。

常用hash算法类:

[java]  view plain copy
  1. package lotusroots.algorithms.math;  
  2.   
  3. import java.security.MessageDigest;  
  4.   
  5. /** 
  6.  * Hash算法大全<br> 
  7.  * 推荐使用FNV1算法 
  8.  *  
  9.  * @algorithm None 
  10.  * @author Goodzzp 2006-11-20 
  11.  * @lastEdit Goodzzp 2006-11-20 
  12.  * @editDetail Create 
  13.  */  
  14. public class HashAlgorithms {  
  15.  /** 
  16.   * 加法hash 
  17.   *  
  18.   * @param key 
  19.   *            字符串 
  20.   * @param prime 
  21.   *            一个质数 
  22.   * @return hash结果 
  23.   */  
  24.  public static int additiveHash(String key, int prime) {  
  25.   int hash, i;  
  26.   for (hash = key.length(), i = 0; i < key.length(); i++)  
  27.    hash += key.charAt(i);  
  28.   return (hash % prime);  
  29.  }  
  30.   
  31.  /** 
  32.   * 旋转hash 
  33.   *  
  34.   * @param key 
  35.   *            输入字符串 
  36.   * @param prime 
  37.   *            质数 
  38.   * @return hash值 
  39.   */  
  40.  public static int rotatingHash(String key, int prime) {  
  41.   int hash, i;  
  42.   for (hash = key.length(), i = 0; i < key.length(); ++i)  
  43.    hash = (hash << 4) ^ (hash >> 28) ^ key.charAt(i);  
  44.   return (hash % prime);  
  45.   // return (hash ^ (hash>>10) ^ (hash>>20));  
  46.  }  
  47.   
  48.  // 替代:  
  49.  // 使用:hash = (hash ^ (hash>>10) ^ (hash>>20)) & mask;  
  50.  // 替代:hash %= prime;  
  51.   
  52.  /** 
  53.   * MASK值,随便找一个值,最好是质数 
  54.   */  
  55.  static int M_MASK = 0x8765fed1;  
  56.   
  57.  /** 
  58.   * 一次一个hash 
  59.   *  
  60.   * @param key 
  61.   *            输入字符串 
  62.   * @return 输出hash值 
  63.   */  
  64.  public static int oneByOneHash(String key) {  
  65.   int hash, i;  
  66.   for (hash = 0, i = 0; i < key.length(); ++i) {  
  67.    hash += key.charAt(i);  
  68.    hash += (hash << 10);  
  69.    hash ^= (hash >> 6);  
  70.   }  
  71.   hash += (hash << 3);  
  72.   hash ^= (hash >> 11);  
  73.   hash += (hash << 15);  
  74.   // return (hash & M_MASK);  
  75.   return hash;  
  76.  }  
  77.   
  78.  /** 
  79.   * Bernstein's hash 
  80.   *  
  81.   * @param key 
  82.   *            输入字节数组 
  83.   * @param level 
  84.   *            初始hash常量 
  85.   * @return 结果hash 
  86.   */  
  87.  public static int bernstein(String key) {  
  88.   int hash = 0;  
  89.   int i;  
  90.   for (i = 0; i < key.length(); ++i)  
  91.    hash = 33 * hash + key.charAt(i);  
  92.   return hash;  
  93.  }  
  94.   
  95.  //  
  96.  // // Pearson's Hash  
  97.  // char pearson(char[]key, ub4 len, char tab[256])  
  98.  // {  
  99.  // char hash;  
  100.  // ub4 i;  
  101.  // for (hash=len, i=0; i<len; ++i)  
  102.  // hash=tab[hash^key[i]];  
  103.  // return (hash);  
  104.  // }  
  105.   
  106.  // // CRC Hashing,计算crc,具体代码见其他  
  107.  // ub4 crc(char *key, ub4 len, ub4 mask, ub4 tab[256])  
  108.  // {  
  109.  // ub4 hash, i;  
  110.  // for (hash=len, i=0; i<len; ++i)  
  111.  // hash = (hash >> 8) ^ tab[(hash & 0xff) ^ key[i]];  
  112.  // return (hash & mask);  
  113.  // }  
  114.   
  115.  /** 
  116.   * Universal Hashing 
  117.   */  
  118.  public static int universal(char[] key, int mask, int[] tab) {  
  119.   int hash = key.length, i, len = key.length;  
  120.   for (i = 0; i < (len << 3); i += 8) {  
  121.    char k = key[i >> 3];  
  122.    if ((k & 0x01) == 0)  
  123.     hash ^= tab[i + 0];  
  124.    if ((k & 0x02) == 0)  
  125.     hash ^= tab[i + 1];  
  126.    if ((k & 0x04) == 0)  
  127.     hash ^= tab[i + 2];  
  128.    if ((k & 0x08) == 0)  
  129.     hash ^= tab[i + 3];  
  130.    if ((k & 0x10) == 0)  
  131.     hash ^= tab[i + 4];  
  132.    if ((k & 0x20) == 0)  
  133.     hash ^= tab[i + 5];  
  134.    if ((k & 0x40) == 0)  
  135.     hash ^= tab[i + 6];  
  136.    if ((k & 0x80) == 0)  
  137.     hash ^= tab[i + 7];  
  138.   }  
  139.   return (hash & mask);  
  140.  }  
  141.   
  142.  /** 
  143.   * Zobrist Hashing 
  144.   */  
  145.  public static int zobrist(char[] key, int mask, int[][] tab) {  
  146.   int hash, i;  
  147.   for (hash = key.length, i = 0; i < key.length; ++i)  
  148.    hash ^= tab[i][key[i]];  
  149.   return (hash & mask);  
  150.  }  
  151.   
  152.  // LOOKUP3  
  153.  // 见Bob Jenkins(3).c文件  
  154.   
  155.  // 32位FNV算法  
  156.  static int M_SHIFT = 0;  
  157.   
  158.  /** 
  159.   * 32位的FNV算法 
  160.   *  
  161.   * @param data 
  162.   *            数组 
  163.   * @return int值 
  164.   */  
  165.  public static int FNVHash(byte[] data) {  
  166.   int hash = (int) 2166136261L;  
  167.   for (byte b : data)  
  168.    hash = (hash * 16777619) ^ b;  
  169.   if (M_SHIFT == 0)  
  170.    return hash;  
  171.   return (hash ^ (hash >> M_SHIFT)) & M_MASK;  
  172.  }  
  173.   
  174.  /** 
  175.   * 改进的32位FNV算法1 
  176.   *  
  177.   * @param data 
  178.   *            数组 
  179.   * @return int值 
  180.   */  
  181.  public static int FNVHash1(byte[] data) {  
  182.   final int p = 16777619;  
  183.   int hash = (int) 2166136261L;  
  184.   for (byte b : data)  
  185.    hash = (hash ^ b) * p;  
  186.   hash += hash << 13;  
  187.   hash ^= hash >> 7;  
  188.   hash += hash << 3;  
  189.   hash ^= hash >> 17;  
  190.   hash += hash << 5;  
  191.   return hash;  
  192.  }  
  193.   
  194.  /** 
  195.   * 改进的32位FNV算法1 
  196.   *  
  197.   * @param data 
  198.   *            字符串 
  199.   * @return int值 
  200.   */  
  201.  public static int FNVHash1(String data) {  
  202.   final int p = 16777619;  
  203.   int hash = (int) 2166136261L;  
  204.   for (int i = 0; i < data.length(); i++)  
  205.    hash = (hash ^ data.charAt(i)) * p;  
  206.   hash += hash << 13;  
  207.   hash ^= hash >> 7;  
  208.   hash += hash << 3;  
  209.   hash ^= hash >> 17;  
  210.   hash += hash << 5;  
  211.   return hash;  
  212.  }  
  213.   
  214.  /** 
  215.   * Thomas Wang的算法,整数hash 
  216.   */  
  217.  public static int intHash(int key) {  
  218.   key += ~(key << 15);  
  219.   key ^= (key >>> 10);  
  220.   key += (key << 3);  
  221.   key ^= (key >>> 6);  
  222.   key += ~(key << 11);  
  223.   key ^= (key >>> 16);  
  224.   return key;  
  225.  }  
  226.   
  227.  /** 
  228.   * RS算法hash 
  229.   */  
  230.  public static int RSHash(String str) {  
  231.   int b = 378551;  
  232.   int a = 63689;  
  233.   int hash = 0;  
  234.   
  235.   for (int i = 0; i < str.length(); i++) {  
  236.    hash = hash * a + str.charAt(i);  
  237.    a = a * b;  
  238.   }  
  239.   
  240.   return (hash & 0x7FFFFFFF);  
  241.  }  
  242.   
  243.  /* End Of RS Hash Function */  
  244.   
  245.  /** 
  246.   * JS算法 
  247.   */  
  248.  public static int JSHash(String str) {  
  249.   int hash = 1315423911;  
  250.   
  251.   for (int i = 0; i < str.length(); i++) {  
  252.    hash ^= ((hash << 5) + str.charAt(i) + (hash >> 2));  
  253.   }  
  254.   
  255.   return (hash & 0x7FFFFFFF);  
  256.  }  
  257.   
  258.  /* End Of JS Hash Function */  
  259.   
  260.  /** 
  261.   * PJW算法 
  262.   */  
  263.  public static int PJWHash(String str) {  
  264.   int BitsInUnsignedInt = 32;  
  265.   int ThreeQuarters = (BitsInUnsignedInt * 3) / 4;  
  266.   int OneEighth = BitsInUnsignedInt / 8;  
  267.   int HighBits = 0xFFFFFFFF << (BitsInUnsignedInt - OneEighth);  
  268.   int hash = 0;  
  269.   int test = 0;  
  270.   
  271.   for (int i = 0; i < str.length(); i++) {  
  272.    hash = (hash << OneEighth) + str.charAt(i);  
  273.   
  274.    if ((test = hash & HighBits) != 0) {  
  275.     hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));  
  276.    }  
  277.   }  
  278.   
  279.   return (hash & 0x7FFFFFFF);  
  280.  }  
  281.   
  282.  /* End Of P. J. Weinberger Hash Function */  
  283.   
  284.  /** 
  285.   * ELF算法 
  286.   */  
  287.  public static int ELFHash(String str) {  
  288.   int hash = 0;  
  289.   int x = 0;  
  290.   
  291.   for (int i = 0; i < str.length(); i++) {  
  292.    hash = (hash << 4) + str.charAt(i);  
  293.    if ((x = (int) (hash & 0xF0000000L)) != 0) {  
  294.     hash ^= (x >> 24);  
  295.     hash &= ~x;  
  296.    }  
  297.   }  
  298.   
  299.   return (hash & 0x7FFFFFFF);  
  300.  }  
  301.   
  302.  /* End Of ELF Hash Function */  
  303.   
  304.  /** 
  305.   * BKDR算法 
  306.   */  
  307.  public static int BKDRHash(String str) {  
  308.   int seed = 131// 31 131 1313 13131 131313 etc..  
  309.   int hash = 0;  
  310.   
  311.   for (int i = 0; i < str.length(); i++) {  
  312.    hash = (hash * seed) + str.charAt(i);  
  313.   }  
  314.   
  315.   return (hash & 0x7FFFFFFF);  
  316.  }  
  317.   
  318.  /* End Of BKDR Hash Function */  
  319.   
  320.  /** 
  321.   * SDBM算法 
  322.   */  
  323.  public static int SDBMHash(String str) {  
  324.   int hash = 0;  
  325.   
  326.   for (int i = 0; i < str.length(); i++) {  
  327.    hash = str.charAt(i) + (hash << 6) + (hash << 16) - hash;  
  328.   }  
  329.   
  330.   return (hash & 0x7FFFFFFF);  
  331.  }  
  332.   
  333.  /* End Of SDBM Hash Function */  
  334.   
  335.  /** 
  336.   * DJB算法 
  337.   */  
  338.  public static int DJBHash(String str) {  
  339.   int hash = 5381;  
  340.   
  341.   for (int i = 0; i < str.length(); i++) {  
  342.    hash = ((hash << 5) + hash) + str.charAt(i);  
  343.   }  
  344.   
  345.   return (hash & 0x7FFFFFFF);  
  346.  }  
  347.   
  348.  /* End Of DJB Hash Function */  
  349.   
  350.  /** 
  351.   * DEK算法 
  352.   */  
  353.  public static int DEKHash(String str) {  
  354.   int hash = str.length();  
  355.   
  356.   for (int i = 0; i < str.length(); i++) {  
  357.    hash = ((hash << 5) ^ (hash >> 27)) ^ str.charAt(i);  
  358.   }  
  359.   
  360.   return (hash & 0x7FFFFFFF);  
  361.  }  
  362.   
  363.  /* End Of DEK Hash Function */  
  364.   
  365.  /** 
  366.   * AP算法 
  367.   */  
  368.  public static int APHash(String str) {  
  369.   int hash = 0;  
  370.   
  371.   for (int i = 0; i < str.length(); i++) {  
  372.    hash ^= ((i & 1) == 0) ? ((hash << 7) ^ str.charAt(i) ^ (hash >> 3)) : (~((hash << 11) ^ str.charAt(i) ^ (hash >> 5)));  
  373.   }  
  374.   
  375.   // return (hash & 0x7FFFFFFF);  
  376.   return hash;  
  377.  }  
  378.   
  379.  /* End Of AP Hash Function */  
  380.   
  381.  /** 
  382.   * JAVA自己带的算法 
  383.   */  
  384.  public static int java(String str) {  
  385.   int h = 0;  
  386.   int off = 0;  
  387.   int len = str.length();  
  388.   for (int i = 0; i < len; i++) {  
  389.    h = 31 * h + str.charAt(off++);  
  390.   }  
  391.   return h;  
  392.  }  
  393.   
  394.  /** 
  395.   * 混合hash算法,输出64位的值 
  396.   */  
  397.  public static long mixHash(String str) {  
  398.   long hash = str.hashCode();  
  399.   hash <<= 32;  
  400.   hash |= FNVHash1(str);  
  401.   return hash;  
  402.  }  
  403.   
  404.  /** 
  405.   * 计算sha1 
  406.   *  
  407.   * @param text 
  408.   *            文本 
  409.   * @return 字节数组 
  410.   * @throws Exception 
  411.   */  
  412.  public static byte[] sha1(String text) throws Exception {  
  413.   MessageDigest md;  
  414.   md = MessageDigest.getInstance("SHA-1");  
  415.   byte[] sha1hash = new byte[40];  
  416.   byte[] input = text.getBytes("utf-8");  
  417.   md.update(input, 0, input.length);  
  418.   sha1hash = md.digest();  
  419.   return sha1hash;  
  420.  }  
  421.   
  422.  // 4位值对应16进制字符  
  423.  static char[] m_byteToHexChar = { '0''1''2''3''4''5''6''7''8''9''a''b''c''d''e''f' };  
  424.   
  425.  /** 
  426.   * 计算sha1 
  427.   *  
  428.   * @param text 
  429.   *            文本 
  430.   * @return 16进制表示的hash值 
  431.   * @throws Exception 
  432.   */  
  433.  public static String sha1_text(String text) throws Exception {  
  434.   byte[] hash = sha1(text);  
  435.   StringBuilder ret = new StringBuilder(hash.length * 2);  
  436.   for (byte b : hash) {  
  437.    int d = (b & 0xff);  
  438.    ret.append(m_byteToHexChar[(d & 0xf)]);  
  439.    d >>= 4;  
  440.    ret.append(m_byteToHexChar[(d & 0xf)]);  
  441.   }  
  442.   return ret.toString();  
  443.  }  
  444. }  


查看评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值