王者荣耀这么久了,还没上王者?哈哈哈,看过来,是不是对英雄理解的不够透彻呢,是不是还没有很好的为英雄分类呢,今天就来看看英雄分类
技术栈
一、EM 聚类简介
二、爬取网上的英雄初始属性值
三、做成饼图
EM 聚类简介
EM 英文名是 Expectation Maximization,也叫最大期望算法。
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。
最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
进行英雄聚类
使用 sklearn 库中的的 EM 聚类算法框架,采用高斯混合模型
from sklearn.mixture import GaussianMixture
复制代码
一些主要参数意义如下,其他参数可以查看相关文档
-
n_components:混合高斯模型个数,也就是想要的聚类个数,默认为1
-
covariance_type:协方差类型,包括{‘full’,‘tied’, ‘diag’, ‘spherical’}四种,分别对应完全协方差矩阵(元素都不为零),相同的完全协方差矩阵(HMM会用到),对角协方差矩阵(非对角为零,对角不为零),球面协方差矩阵(非对角为零,对角完全相同,球面特性),默认‘full’ 完全协方差矩阵
-
max_iter:最大迭代次数,默认100
所以可以构造 GMM 聚类如下:
# 构造 GMM 聚类
gmm = GaussianMixture(n_components=20, covariance_type='full')
复制代码
有一份如下结构的数据:
[图片上传中...(image-5dab6a-1562219826453-6)]
<figcaption></figcaption>
可以看到,涉及到的属性非常多,初始的属性设置如下:
feature = ['1级物理攻击', '15级物理攻击', '每级成长',
'1级生命', '15级生命', '生命成长

本文介绍了如何使用Python的EM聚类算法对王者荣耀英雄进行分类,通过爬虫抓取英雄属性,进行数据清洗、降维和规范化,最后通过饼图可视化展示英雄的分组情况。
最低0.47元/天 解锁文章
829

被折叠的 条评论
为什么被折叠?



