前端仔一只,不时刷刷算法题防止老年痴呆。本文是个人算法系列中的一篇,如果想了解更多关于算法的内容,请点击博主的算法专栏查看。
说到算法,入门级的算是排序算法了。还记得读大学时,学的第一个是冒泡排序。初次接触算法,觉得很神秘,一个冒泡竟然搞了很久。
这篇文章主要介绍一些经典的排序算法,由于博主现在做 web 前端方面的工作,所以编程语言就使用 JavaScript 了。不过,如果是学其他语言的人,读懂大致的思路是没问题的,完全可以仿照文章中 JavaScript 版的代码进行重写。
概述
排序算法是非常基础的算法之一,在我们生活中应用相当广泛,比如我们逛购物网站时,会按商品的销量去检索。上图列出了基本的排序的比较情况,根据各自的时间复杂度和空间复杂度,我们可以知道算法的好坏。
算法
限于篇幅原因,这里不会给出所有排序算法的代码。主要针对一些常用和面试常考的算法,给出代码示例,所有算法均为从小到大排序。
插入排序
插入排序是一种最简单直观的排序算法,它的原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
function sort(arr) {
var arrCopy = arr.concat();
for (var i = 1; i < arrCopy.length; i++) {
var prevIndex = i - 1;
var currentValue = arrCopy[i];
while (prevIndex >= 0 && currentValue < arrCopy[prevIndex]) {
arrCopy[prevIndex + 1] = arrCopy[prevIndex];
prevIndex--;
}
arrCopy[prevIndex + 1] = currentValue;
}
return arrCopy;
}
选择排序
选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。
它的原理是首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
重复上述步骤,直到所有元素均排序完毕。
function selectionSort(arr) {
var arrCopy = arr.concat();
var length = arrCopy.length;
var minIndex, temp;
for(var i = 0; i < length - 1; i++) {
minIndex = i;
for(var j = i + 1; j < length; j++) {
if (arrCopy[j] < arrCopy[minIndex]) {
minIndex = j;
}
}
temp = arrCopy[i];
arrCopy[i] = arrCopy[minIndex];
arrCopy[minIndex] = temp;
}
return arrCopy;
}
冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
function bubbleSort(arr) {
var len = arr.length;
for (var i = 0; i < len - 1; i++) {
for (var j = 0; j < len - 1 - i; j++) {
if (arr[j] > arr[j + 1]) { // 相邻元素两两对比
var temp = arr[j + 1]; // 元素交换
arr[j + 1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。
事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
function quickSort(left, right, arr) {
if (left >= right || right > arr.length) {
return;
}
var pivot = arr[left];
var i = left;
var j = right;
while (i !== j) {
while (arr[j] >= pivot && j > i) {
j--;
}
while (arr[i] <= pivot && j > i) {
i++;
}
if (j > i) {
var temp = arr[j];
arr[j] = arr[i];
arr[i] = temp;
}
}
arr[left] = arr[i];
arr[i] = pivot;
quickSort(left, i - 1, arr);
quickSort(i + 1, right, arr);
}
参考资料:
归并排序
归并排序的核心思想就是分治。这种思想方法可以提高算法的效率,在很多地方有用到,比如二分查找等。
function sort(arr) {
const n = arr.length
// 公用一个临时空间,可以减少时间复杂度
const temp = new Array(n)
mergeSort(arr, temp, 0, n - 1)
}
function mergeSort(arr, temp, l, r) {
if (l >= r) {
return
}
const mid = l + Math.floor((r - l) / 2)
mergeSort(arr, temp, l, mid)
mergeSort(arr, temp, mid + 1, r)
// 这一步可以减少很多不必要的操作
if (arr[mid] <= arr[mid + 1]) {
return;
}
merge(arr, temp, l, mid, r)
}
function merge(arr, temp, l, mid, r) {
let lp = l, rp = mid + 1, k = l
while (lp <= mid && rp <= r) {
if (arr[lp] > arr[rp]) {
temp[k++] = arr[rp++]
} else {
temp[k++] = arr[lp++]
}
}
while (lp <= mid) {
temp[k++] = arr[lp++]
}
while (rp <= r) {
temp[k++] = arr[rp++]
}
for (let i = l; i <= r; i++) {
arr[i] = temp[i]
}
}
参考资料:
如果我的文章可以帮助到大家,请不吝赐赞。另外,如果想及时收到更多关于算法和前端方面的讯息,可以关注我的博客。