论文
记录学习和思考的过程。
周健文
这个作者很懒,什么都没留下…
展开
-
低功耗计算机视觉技术前沿,四大方向,追求更小、更快、更高效
深度学习在广泛应用于目标检测、分类等计算机视觉任务中。但这些应用往往需要很大的计算量和能耗。例如处理一张图片分类,VGG-16需要做 150亿次计算,而YOLOv3需要执行390亿次计算。这就带来一个问题,如何在低功耗的嵌入式系统或移动设备中部署深度学习呢?一种解决办法是将计算任务转移到云侧,但这并不能最终解决问题,因为许多深度学习应用程序需要在端侧进行计算,例如部署在无人机(通常会在断网情况下...转载 2020-04-01 01:51:32 · 250 阅读 · 0 评论 -
深入浅出读懂ResNet原理与实现
ResNet深层网络的退化问题绕路残差学习,恒等映射虚线,维度发生变化F(x)叫做残差,H(x)正在拟合的结果Stage = {Block={Conv}}良好的扩展性,一套代码实现不同的层次全局平均池化能取替的全连接层,减少过拟合的发生。BottleNeckconv:2/3block3https://github.com/pytorch/vision/blob/maste...原创 2020-03-31 01:06:56 · 24985 阅读 · 4 评论 -
Fast and Easy Infinitely Wide Networks with Neural Tangents
只要网络足够宽,深度学习动态就能大大简化,并且更易于理解。最近的许多研究结果表明,无限宽度的DNN会收敛成一类更为简单的模型,称为高斯过程(Gaussian processes)。于是,复杂的现象可以被归结为简单的线性代数方程,以了解AI到底是怎样工作的。左图:示意图显示了深度神经网络如何随着简单的输入/输出图变得无限宽而诱发它们。右图:随着神经网络宽度的增加,我们看到在网络的不同随机实例上的...转载 2020-03-15 11:50:15 · 219 阅读 · 0 评论