CSP 202112-1 序列查询

目录

题目描述

输入格式

输出格式

数据范围

输入样例 

提示

题目分析

代码实现


题目描述

西西艾弗岛的购物中心里店铺林立,商品琳琅满目。

为了帮助游客根据自己的预算快速选择心仪的商品,IT 部门决定研发一套商品检索系统,支持对任意给定的预算 x,查询在该预算范围内(≤x)价格最高的商品。

如果没有商品符合该预算要求,便向游客推荐可以免费领取的西西艾弗岛定制纪念品。

假设购物中心里有 nn 件商品,价格从低到高依次为 A1,A2⋯An,则根据预算 xx 检索商品的过程可以抽象为如下序列查询问题。

A=[A0,A1,A2,⋯,An] 是一个由 n+1 个 [0,N) 范围内整数组成的序列,满足 0=A0<A1<A2<⋯<An<N。(这个定义中蕴含了 n 一定小于 N。)

基于序列 A,对于 [0,N) 范围内任意的整数 x,查询 f(x) 定义为:序列 A 中小于等于 xx 的整数里最大的数的下标

具体来说有以下两种情况:

  1. 存在下标 0≤i<n 满足 Ai≤x<Ai+1。此时序列 A中从 A0 到 Ai 均小于等于 x,其中最大的数为 Ai,其下标为 i,故 f(x)=i。
  2. An≤x。此时序列 A 中所有的数都小于等于 x,其中最大的数为An,故 f(x)=n。

令 sum(A)表示 f(0) 到 f(N−1) 的总和,即:

sum(A)=∑i=0N−1f(i)=f(0)+f(1)+f(2)+⋯+f(N−1)

对于给定的序列 A,试计算 sum(A)。

输入格式

输入的第一行包含空格分隔的两个正整数 n 和 N。

输入的第二行包含 nn 个用空格分隔的整数 A1,A2,⋯,An。

注意 A0固定为 00,因此输入数据中不包括 A0。

输出格式

仅输出一个整数,表示 sum(A) 的值。

数据范围

50%的测试数据满足 1≤n≤200 且 n<N≤1000;
全部的测试数据满足 1≤n≤200且 n<N≤1e7。

输入样例 

输入样例1:

3 10
2 5 8

输出样例1:

15

样例1解释

A=[0,2,5,8]

i0123456789
f(i)0011122233

如上表所示,sum(A)=f(0)+f(1)+⋯+f(9)=15。

考虑到 f(0)=f(1)、f(2)=f(3)=f(4)、f(5)=f(6)=f(7)以及 f(8)=f(9),亦可通过如下算式计算 sum(A):

sum(A)=f(0)×2+f(2)×3+f(5)×3+f(8)×

输入样例2:

9 10
1 2 3 4 5 6 7 8 9

输出样例2:

45

 

提示

若存在区间 [i,j)满足 f(i)=f(i+1)=⋯=f(j−1),使用乘法运算 f(i)×(j−i)代替将 f(i) 到 f(j−1)逐个相加,或可大幅提高算法效率。

题目分析

根据提示,将数据进行分段分析。

 代码实现

#include<bits/stdc++.h>

using namespace std;

int n,N,sum;
int a[210];

int main()
{
    scanf("%d%d",&n,&N);
    int t=0;    //记录f(i)值
    for(int i=1;i<=n;i++) 
    {
        scanf("%d",&a[i]);
    //每输入一个a[i]就把它的前一段整理出来并相加
        sum+=(a[i]-a[i-1])*t;
        t++;
    }
    //循环一共有n次 但是f(i)相同值段一共有n+1段 最后一段特殊处理
    sum+=(N-a[n])*t;
        
    cout<<sum;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值