参考文献
文章平均质量分 65
zhoutongchi
这个作者很懒,什么都没留下…
展开
-
涉及稀疏编码等文献(逐步更新文献)-----------之二
涉及稀疏编码等文献(考虑图像块,局部特征)应用:跟踪、去噪、图像分割、重构、模式识别2)Tracking[1] Xu Jia, Huchuan Lu, Ming-Hsuan Yang. VisualTracking via Adaptive Structural Local Sparse Appearance Model.CVPR,2012.[2] Tianxiang Bai,原创 2012-11-30 11:27:39 · 939 阅读 · 0 评论 -
无监督学习参考文献-Sparse coding / ICA models of V1参考文献----之三
无监督学习参考文献-Sparse coding / ICA models of V1http://www.cs.helsinki.fi/u/ahyvarin/papers/brainimaging.shtml牛人:A. Hyvärinen [1]M. U. Gutmann and A. Hyvärinen.Extracting coactivated features原创 2012-12-06 15:28:07 · 1327 阅读 · 0 评论 -
非线性特征提取技术 参考文献---之四
仅代表个人意见,可能不全非线性特征提取技术的研究较少目前主要从径向投影及径向高斯分布方面着手。REF:[1]SiweiLyu.Nonlinear extraction of Independentcomponents ofnatural Images Using Radial Gaussianization.Neural Computation 21,1485-1519(200原创 2012-11-16 19:02:28 · 1144 阅读 · 0 评论 -
Tong Zhang's research papers(文献资料)
Tong Zhang's research papersTech_Reports:[TR] Shai Shalev-Shwartz and Tong Zhang. Proximal Stochastic Dual Coordinate Ascent, Tech Report arXiv:1211.2717, Nov 2012. [Software原创 2012-12-22 14:01:28 · 1429 阅读 · 0 评论 -
无监督学习特征--稀疏编码、深度学习、ICA部分代表文献-------之一
l 学习映射函数及在行为识别/图像分类中应用的文献(模型与非模型之间存在关联,算法相互采用,没有明确的区分,含仿生学文献)% 研究重点放到ICA模型及深度学习兼顾稀疏编码1)稀疏编码(稀疏编码、自动编码、递归编码):[1] B. Olshausen and D. Field. Emergence of simple-cell receptive field propert原创 2012-11-16 18:55:16 · 5527 阅读 · 0 评论 -
Reading Group
Reading Group20 January 2006A. Corduneanu and C.M. Bishop, Variational Bayesian Model Selection for Mixture DistributionsPresenter: Shihao Ji, Presentation27 January 2006M. Kuss an原创 2012-12-13 15:11:19 · 2146 阅读 · 0 评论 -
[Paper-CV] ECCV 2012 papers 1
http://applesun0757.blog.163.com/blog/static/18737419220126702145274/[Paper-CV] ECCV 2012 papers 12012-07-07 00:21:45| 分类:Papers-CV | 标签:|字号大中小订阅 13M-Best Mod转载 2013-01-06 16:30:47 · 5500 阅读 · 0 评论 -
http://www.cs.stevens.edu/~ghua/ghweb/Research.htm
Research[Human Sensing][Graphical Model][Local Image Descriptor][Internet Vision][Mobile Vision]Understanding Human from Image and VideoContextual Face Recognition in Rea原创 2013-01-07 22:05:28 · 1468 阅读 · 0 评论 -
http://www.vcipl.okstate.edu/publications.html(资源转载)
Visual Computing and Image Processing LabOklahoma State UniversityImaging, Processing, nferencing and LearningHome转载 2013-11-09 10:57:08 · 2208 阅读 · 0 评论