深入浅出素数算法

 注意: 如果没有特殊说明, 以下讨论的都是针对n为素数时的时间复杂度

1. 根据概念判断:

     如果一个正整数只有两个因子, 1和p,则称p为素数.

bool isPrime(int n)
{
      if(n < 2) return false;

      for(int i = 2; i < n; ++i)
          if(n%i == 0) return false;

      return true;
}

时间复杂度O(n).


2. 改进, 去掉偶数的判断

bool isPrime(int n)
{
      if(n < 2) return false;
      if(n == 2) return true;

      for(int i = 3; i < n; i += 2)
          if(n%i == 0) return false;

      return true;
}

时间复杂度O(n/2), 速度提高一倍.


3. 进一步减少判断的范围

     定理: 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个因子d.
     证明: 如果n不是素数, 则由定义n有一个因子d满足1<d<n.
             如果d大于sqrt(n), 则n/d是满足1<n/d<=sqrt(n)的一个因子.

bool isPrime(int n)
{
      if(n < 2) return false;
      if(n == 2) return true;

      for(int i = 3; i*i <= n; i += 2)
          if(n%i == 0) return false;

      return true;
}

 

这样也可以

bool IsPrim(int a)
{
      int divisor=3;
      int limit=a;
      if(a%2==0)
           return false;
      while(limit>divisor)
      {
             if(a%divisor==0)
                  return false;
             limit=a/divisor;
             divisor+=2;
      }
      return true;
}                                    
     
  

时间复杂度O(sqrt(n)/2), 速度提高O((n-sqrt(n))/2).


4. 剔除因子中的重复判断.
     例如: 11%3 != 0 可以确定 11%(3*i) != 0.

     定理: 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个"素数"因子d.
     证明: I1. 如果n不是素数, 则n有满足1<d<=sqrt(n)的一个因子d.
             I2. 如果d是素数, 则定理得证, 算法终止.
             I3. 令n=d, 并转到步骤I1.

     由于不可能无限分解n的因子, 因此上述证明的算法最终会停止.

// primes[i]是递增的素数序列: 2, 3, 5, 7, ...
// 更准确地说primes[i]序列包含1->sqrt(n)范围内的所有素数

bool isPrime(int primes[], int n)
{
      if(n < 2) return false;

      for(int i = 0; primes[i]*primes[i] <= n; ++i)
          if(n%primes[i] == 0) return false;

      return true;
}

假设n范围内的素数个数为PI(n), 则时间复杂度O(PI(sqrt(n))).

函数PI(x)满足素数定理: ln(x)-3/2 < x/PI(x) < ln(x)-1/2, 当x >= 67时.

因此O(PI(sqrt(n)))可以表示为O(sqrt(x)/(ln(sqrt(x))-3/2)),

O(sqrt(x)/(ln(sqrt(x))-3/2))也是这个算法的空间复杂度.


5. 构造素数序列primes[i]: 2, 3, 5, 7, ...

由4的算法我们知道, 在素数序列已经被构造的情况下, 判断n是否为素数效率很高;

但是, 在构造素数序列本身的时候, 是否也可是达到最好的效率呢?

事实上这是可以的! -- 我们在构造的时候完全可以利用已经被构造的素数序列!

假设我们已经我素数序列: p1, p2, .. pn

现在要判断pn+1是否是素数, 则需要(1, sqrt(pn+1)]范围内的所有素数序列,

而这个素数序列显然已经作为p1, p2, .. pn的一个子集被包含了!

// 构造素数序列primes[]

void makePrimes(int primes[], int num)
{
      int i, j, cnt;
    
      primes[0] = 2;
      primes[1] = 3;
    
      for(i = 5, cnt = 2; cnt < num; i += 2)
      {
          int flag = true;
          for(j = 1; primes[j]*primes[j] <= i; ++j)
          {
              if(i%primes[j] == 0)
              {
                  flag = false; break;
              }
          }
          if(flag) primes[cnt++] = i;
      }
}

makePrimes的时间复杂度比较复杂, 而且它只有在初始化的时候才被调用一次.在一定的应用范围内, 我们可以把近似认为makePrimes需要常数时间.在后面的讨论中, 我们将探讨一种对计算机而言更好的makePrimes方法.

附:素数的删法

     [定理]若比素数P小的所有素数的倍数均已从IsPrim中删去,且P*P > N, 剩下的数就全为素数。

 void CreatPrim()   
 {
      for(int i=2;i<=N;i++)
           IsPrim[i]=i%2;
      IsPrim[2]=1;
      for(int i=3;i*i<N;i+=2)
      {
             if(IsPrim[i])
              for(int j=i;i*j<=N;j+=2)
                   IsPrim[i*j]=0;
      }
 }          
               
  

 

 


6. 更好地利用计算机资源...

当前的主流PC中, 一个整数的大小为2^32. 如果需要判断2^32大小的数是否为素数,则可能需要测试[2, 2^16]范围内的所有素数(2^16 == sqrt(2^32)).由4中提到的素数定理我们可以大概确定[2, 2^16]范围内的素数个数.由于2^16/(ln(2^16)-1/2) = 6138, 2^16/(ln(2^16)-3/2) = 6834,我们可以大概估计出[2, 2^16]范围内的素数个数6138 < PI(2^16) < 6834.

在对[2, 2^16]范围内的素数进行统计, 发现只有6542个素数:

p_6542: 65521, 65521^2 = 4293001441 < 2^32, (2^32 = 4294967296)
p_6543: 65537, 65537^2 = 4295098369 > 2^32, (2^32 = 4294967296)

在实际运算时unsigned long x = 4295098369;将发生溢出, 为131073.在程序中, 我是采用double类型计算得到的结果.

分析到这里我们可以看到, 我们只需要缓冲6543个素数, 我们就可以采用4中的算法高效率地判断[2, 2^32]如此庞大范围内的素数!(原本的2^32大小的问题规模现在已经被减小到6543规模了!)

虽然用现在的计算机处理[2, 2^16]范围内的6542个素数已经没有一点问题,虽然makePrimes只要被运行一次就可以, 但是我们还是考虑一下是否被改进的可能?!

我想学过java的人肯定想把makePrimes作为一个静态的初始化实现, 在C++中也可以模拟java中静态的初始化的类似实现:

#define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0])))

static int primes[6542+1];
static struct _Init { _Init(){makePrimes(primes, NELEMS(primes);} } _init;

如此, 就可以在程序启动的时候自动掉用makePrimes初始化素数序列.但, 我现在的想法是: 为什么我们不能在编译的时候调用makePrimes函数呢? 完全可以!!! 代码如下:

// 这段代码可以由程序直接生成

const static int primes[] =
{
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,
593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,
857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,
...
65521, 65537
};

有点不可思议吧:), 原本makePrimes需要花费的时间复杂度现在真的变成O(1)了!(我觉得叫O(0)可能更合适!)

7. 二分法查找

现在我们缓存了前大约sqrt(2^32)/(ln(sqrt(2^32)-3/2))个素数列表, 在判断2^32级别的

素数时最多也只需要PI(sqrt(2^32))次判断(准确值是6543次), 但是否还有其他的方式判断呢?

当素数比较小的时候(不大于2^16), 是否可以直接从缓存的素数列表中直接查询得到呢?

答案是肯定的! 由于primes是一个有序的数列, 因此我们当素数小于2^16时, 我们可以直接

采用二分法从primes中查询得到(如果查询失败则不是素数).

// 缺少的代码请参考前边

#include <stdlib.h>

static int cmp(const int *p, const int *q)
{
      return (*p) - (*q);
}

bool isPrime(int n)
{
      if(n < 2) return false;
      if(n == 2) return true;
      if(n%2 == 0) return false;

      if(n >= 67 && n <= primes[NELEMS(primes)-1])
      {
          return NULL !=
              bsearch(&n, primes, NELEMS(primes), sizeof(n), cmp);
      }
      else
      {
          for(int i = 1; primes[i]*primes[i] <= n; ++i)
              if(n%primes[i] == 0) return false;
          return true;
      }
}

时间复杂度:

    if(n <= primes[NELEMS(primes)-1] && n >= 67): O(log2(NELEMS(primes))) < 13;
    if(n >    primes[NELEMS(primes)-1]): O(PI(sqrt(n))) <= NELEMS(primes).

8. 素数定理+2分法查找

在9中, 我们对小等于primes[NELEMS(primes)-1]的数采用2分法查找进行判断.我们之前针对2^32缓冲的6453个素数需要判断的次数为 13次(log2(1024*8) == 13).对于小的素数而言(其实就是2^16范围只内的数), 13次的比较已经完全可以接受了.不过根据素数定理: ln(x)-3/2 < x/PI(x) < ln(x)-1/2, 当x >= 67时, 我们依然可以进不步缩小小于2^32情况的查找范围(现在是0到NELEMS(primes)-1范围查找).我们需要解决问题是n <= primes[NELEMS(primes)-1):

如果n为素数, 那么它在素数序列可能出现的范围在哪?

      ---- (n/(ln(n)-1/2), n/(ln(n)-3/2)), 即素数定理!

上面的代码修改如下:

bool isPrime(int n)
{
      if(n < 2) return false;
      if(n == 2) return true;
      if(n%2 == 0) return false;

      int hi = (int)ceil(n/(ln(n)-3/2));

      if(n >= 67 && hi < NELEMS(primes))
      {
          int lo = (int)floor(n/(ln(n)-1/2));

          return NULL !=
              bsearch(&n, primes+lo, hi-lo, sizeof(n), cmp);
      }
      else
      {
          for(int i = 1; primes[i]*primes[i] <= n; ++i)
              if(n%primes[i] == 0) return false;
          return true;
      }
}

时间复杂度:

    if(n <= primes[NELEMS(primes)-1] && n >= 67): O(log2(hi-lo))) < ???;
    if(n >    primes[NELEMS(primes)-1]): O(PI(sqrt(n))) <= NELEMS(primes).


9. 打包成素数库(给出全部的代码)

到目前为止, 我已经给出了我所知道所有改进的方法(如果有人有更好的算法感谢告诉我).这里需要强调的一点是, 这里讨论的素数求法是针对0-2^32范围的数而言, 至于像寻找成百上千位大小的数不在此讨论范围, 那应该算是纯数学的内容了.

代码保存在2个文件: prime.h, prime.cpp.

// file: prime.h

#ifndef PRIME_H_2006_10_27_
#define PRIME_H_2006_10_27_

extern int    Prime_max(void);         // 素数序列的大小
extern int    Prime_get (int i);          // 返回第i个素数, 0 <= i < Prime_max

extern bool Prime_test(int n);       // 测试是否是素数, 1 <= n < INT_MAX

#endif

///

// file: prime.cpp

#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>

#include "prime.h"

// 计算数组的元素个数

#define NELEMS(x) ((sizeof(x)) / (sizeof((x)[0])))

// 素数序列, 至少保存前6543个素数!
// 我个人习惯缓冲前(1024*8)个:-)

static const int primes[] =
{
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,
593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,
857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,
...
65521, 65537
};

// bsearch的比较函数

static int cmp(const void *p, const void *q)
{
      return (*(int*)p) - (*(int*)q);
}

// 缓冲的素数个数

int Prime_max()
{
      return NELEMS(primes);
}

// 返回第i个素数

int Prime_get(int i)
{
      assert(i >= 0 && i < NELEMS(primes));
      return primes[i];
}

// 测试n是否是素数

bool Prime_test(int n)
{
      assert(n > 0);

      // 偶数情况单独判断

      if(n < 2) return false;
      if(n == 2) return true;
      if(!(n&1)) return false;

      // 如果n为素数, 则在序列hi位置之前

      int lo, hi = (int)ceil(n/(log(n)-3/2.0));

      if(hi < NELEMS(primes))
      {
          // 确定2分法查找的范围
          // 只有n >= 67是才满足素数定理

          if(n >= 67) lo = (int)floor(n/(log(n)-1/2.0));
          else { lo = 0; hi = 19; }

          // 查找成功则为素数

          return NULL !=
              bsearch(&n, primes+lo, hi-lo, sizeof(n), cmp);
      }
      else
      {
          // 不在保存的素数序列范围之内的情况

          for(int i = 1; primes[i]*primes[i] <= n; ++i)
              if(n%primes[i] == 0) return false;

          return true;
      }
}


10. 回顾, 以及推广

到这里, 关于素数的讨论基本告一段落. 回顾我们之前的求解过程, 我们会发现如果缺少数学的基本知识会很难设计好的算法; 但是如果一味地只考虑数学原理,而忽律了计算机的本质特征, 也会有同样的问题.一个很常见的例子就是求Fibonacci数列. 当然方法很多, 但是在目前的计算机中都没有实现的必要!

因为Fibonacci数列本身是指数增长的, 32位的有符号整数所能表示的位置只有前46个:

static const int Fibonacci[] =
{
      0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,
      2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,
      317811,514229,832040,1346269,2178309,3524578,5702887,9227465,
      14930352,24157817,39088169,63245986,102334155,165580141,267914296,
      433494437,701408733,1134903170,1836311903,-1323752223

      // 注意:数列到F47已经发生溢出!!!
};

因此, 我只需要把前46个Fibonacci数保存到数组中就可以搞定了!比如: F(int i){return Fibonacci(i);}非常简单, 效率也非常好.同样的例子如求阶乘n!, 虽然也有很多数学上的描述, 但是计算机一般都表示不了,我们直接把能用的计算好放到内存中就可以了.

总之, 许多东西本身是好的, 但是不要被它束缚了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值