/* 原题描述:http://acm.pku.edu.cn/JudgeOnline/problem?id=1837
从状态入手,发现,已知一个状态,在此基础上多挂一个物体得到的新状态,只与原状态的平衡度有关,与上面挂的什么无关。因此得到了方程。
dp[i][j] 表示在挂满前i个物体的时,平衡度为j的挂法的数量。j为正表示右面重。最极端的情况是所有物体都挂在最远端,
因此平衡度最大值为15*20*25=7500。原则上就应该有dp[ 0..20 ][-7500 .. 7500 ]。因此做一个处理,使得数组开为 dp[0.. 20][0..15000]。
现在说这个方程。dp[i][j]=sigma( dp[i-1][ j-c[k]*w[i] ] ), k=1~C, j=0~15000, i=1~20。初始状态 dp[0][7500]=1 表示不用物体时,
平衡度为0有一种挂法,当然那就是什么都不挂
复杂度O(C*G*15000)完全是可以接受的(以上内容来自:http://blog.csdn.net/AllenLSY/archive/2009/12/05/4945835.aspx)
*/
#include <iostream>
using namespace std;
int C, G, dp[21][15001], c[21], w[21];
int main()
{
cin >> C >> G;//C可以在天平的C的地方挂砝码,共有G个砝码要挂
for(int i=1;i<=C;i++)
cin >> c[i];
for(int i=1;i<=G;i++)
cin >> w[i];
dp[0][7500]=1;
for(int i=1;i<=G;i++)
{
for(int j=-7500;j<= 7500;j++)
{
if (dp[i-1][j+7500]!=0)
{
for(int k=1;k<=C;k++)
dp[i][j+c[k]*w[i]+7500]+=dp[i-1][j+7500];
}
}
}
cout << dp[G][7500]<<endl;
return 0;
}
poj 1837计算让砝码平衡的方案数
最新推荐文章于 2023-01-01 16:01:45 发布