面试题集合

题目列表

  1. 二叉树遍历非递归
  2. 2Sum,3Sum问题
  3. 最长无重复子字符串
  4. KMP算法

1、二叉树遍历非递归

先序

void PreOrder_Nonrecursive1(BiTree* T)     //先序遍历的非递归   
{  
   if(!T)    
       return ;  
   stack<BiTree*> s;  
   BiTree* curr = T;  
   while(curr != NULL || !s.empty())  
   {  
       while(curr != NULL)  
       {  
           cout<<curr->data<<"  ";  
           s.push(curr);  
           curr = curr->lchild;  
       }  
       if(!s.empty())  
       {  
           curr = s.top();  
           s.pop();  
           curr = curr->rchild;  
       }  
   }  
}

中序

void InOrderTraverse1(BiTree* T)   // 中序遍历的非递归    
{    
    if(!T)    
        return ;    
    BiTree* curr = T;    // 指向当前要检查的节点    
    stack<BiTree*> s;  
    while(curr != NULL || !s.empty())  
    {  
        while(curr != NULL)  
        {  
            s.push(curr);  
            curr = curr->lchild;  
        }//while  
        if(!s.empty())  
        {  
            curr = s.top();  
            s.pop();  
            cout<<curr->data<<"  ";  
            curr = curr->rchild;  
        }  
    }  
} 

后序

void PostOrder_Nonrecursive1(BiTree* T)  // 后序遍历的非递归      
{      
   stack<BiTree*> S;      
   BiTree* curr = T ;           // 指向当前要检查的节点    
   BiTree* previsited = NULL;    // 指向前一个被访问的节点    
   while(curr != NULL || !S.empty())  // 栈空时结束      
   {      
       while(curr != NULL)            // 一直向左走直到为空    
       {      
           S.push(curr);      
           curr = curr->lchild;      
       }      
       curr = S.top();    
       // 当前节点的右孩子如果为空或者已经被访问,则访问当前节点    
       if(curr->rchild == NULL || curr->rchild == previsited)      
       {      
           cout<<curr->data<<"  ";      
           previsited = curr;      
           S.pop();      
           curr = NULL;      
       }      
       else    
           curr = curr->rchild;      // 否则访问右孩子    
   }      
}     
   
void PostOrder_Nonrecursive(BiTree* T)  // 后序遍历的非递归     双栈法    
{      
   stack<BiTree*> s1 , s2;      
   BiTree* curr ;           // 指向当前要检查的节点    
   s1.push(T);    
   while(!s1.empty())  // 栈空时结束      
   {    
       curr = s1.top();    
       s1.pop();    
       s2.push(curr);    
       if(curr->lchild)    
           s1.push(curr->lchild);    
       if(curr->rchild)    
           s1.push(curr->rchild);    
   }    
   while(!s2.empty())    
   {    
       printf("%c ", s2.top()->data);    
       s2.pop();    
   }    
} 

2、2Sum,3Sum问题

2sum问题

Given nums = [2, 7, 2, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
方法:排序,使用左右指针,复杂度为nlogn

class Solution {
public:
    vector<int> TwoSum(vector<int> &a, int num) {
        vector<int> result;
        sort(a.begin(), a.end());//vector中sort函数使用的是快排,时间复杂度为NlogN
        int len = a.size();
        int low = 0;
        int high = len - 1;
        while (low < high) {
            if (low == high)
                break;
            int sum = a[low] + a[high];
            if (sum < num)
                low++;
            else if (sum > num)
                high--;
            else {
                result.push_back(a[low]);
                result.push_back(a[high]);
                low++;
                high--;
            }
        }
        for (int i = 0; i < result.size(); i++) {
            cout << result[i] << endl;
        }
        return result;
    }
};

int main() {
    Solution st;
    vector<int> a = {2, 5, 3, 6, 1};
    st.TwoSum(a, 7);
}

3sum问题

For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:[ [-1, 0, 1], [-1, -1, 2]]。
方法

class Solution {
public:
    vector<vector<int>> ThreeSum(vector<int> &a) {
        vector<vector<int>> result;
        sort(a.begin(), a.end());
        int len = a.size();
        for (int i = 0; i < len; i++) {
            int target = -a[i];//对当前数取相反数
            int low = i + 1;
            int high = len - 1;
            while (low < high) {
                if (low == high)
                    break;
                int sum = a[low] + a[high];
                if (sum > target)
                    high--;
                else if (sum < target)
                    low++;
                else {
                    vector<int> tmp(3, 0);
                    tmp[0] = a[i];
                    tmp[1] = a[low];
                    tmp[2] = a[high];
                    result.push_back(tmp);
                    while (low < high && a[low] == tmp[1])//去除重复元素
                        low++;
                    while (low < high && a[low] == tmp[2])
                        high--;
                }
            }
            while (i + 1 < len && a[i + 1] == a[i])//若相邻两数相等,可跳过后面那个数
                i++;
        }
        return result;
    }
};

3、最长无重复子字符串

例子:abcabcd->abc->3

#include<map>
int lengthOfLongestSubstring(string s) {
        int ret = 0;
        map<char, int> m;
        int start = 1;
        for (int i = 1; i <= s.length(); i++)
        {
            char c = s[i - 1];
            if (m[c] >= start)//有重复字符出现时
            {
                start = m[c] + 1;
                m[c] = i;

            }
            else//非重复字符时
            {
                m[c] = i;
                ret = max(ret, i - start + 1);
            }

        }
        return ret;
    }

4、KMP算法

这里是引用

在这里插入代码片

5、动态规划

常见动态规划问题:
装配站问题、背包问题、最长公共子序列
动态规划问题四个步骤:
1、定义最优子问题
2、定义状态s[i,j]
3、定义决策、状态转换方程
4、确定边界条件

1.最长公共子序列长度

#include <iostream>
#include <string>
#include <algorithm>

using namespace std;

int lcs(string str1, string str2) {
    int len1 = str1.size();
    int len2 = str2.size();
    int dp[len1 + 1][len2 + 1];
    for (int i = 0; i <= len1; i++) {
        for (int j = 0; j <= len2; j++) {
            if (i == 0 || j == 0)
                dp[i][j] = 0;
            else if (str1[i - 1] == str2[j - 1])
                dp[i][j] = dp[i - 1][j - 1] + 1;
            else
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
        }
    }
    cout << dp[len1][len2] << endl;
    return dp[len1][len2];
}

int main() {
    string s1("13456778");
    string s2("357486782");
    lcs(s1, s2);

    return 0;
}

2.最长公共子串长度

#include <iostream>
#include <string>
#include <algorithm>

using namespace std;


int lcs2(string str1, string str2) {
    int len1 = str1.size();
    int len2 = str2.size();
    int dp[len1 + 1][len2 + 1];
    int result = 0;
    for (int i = 0; i <= len1; i++) {
        for (int j = 0; j <= len2; j++) {
            if (i == 0 || j == 0)
                dp[i][j] = 0;
            else if (str1[i - 1] == str2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
                result = max(dp[i][j], result);
            } else
                dp[i][j] = 0;
        }
    }
    cout << result << endl;
    return result;
}

int main() {
    string s1("13456778");
    string s2("357486782");
    lcs2(s1, s2);

    return 0;
}

3.最长回文串

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值