- 博客(2)
- 收藏
- 关注
原创 数理统计学习笔记(持续更新)
通过计算这两个积分,我们可以得到 ( E(X) = \mu )。这是因为 ( \mu ) 是分布的中点,拉普拉斯分布在 ( \mu ) 处对称。通过计算这两个积分,我们可以得到 ( E(X^2) = \mu^2 + 2b^2 )。方差 ( Var(X) ) 定义为 ( E[(X - E(X))^2] )。假设样本X1,X2相互独立且服从拉普拉斯分布,那么交叉项E(X_1X_2)=E(X_1)E(X_2)因此,拉普拉斯分布的方差是 ( 2b^2 ),这表明方差与尺度参数 ( b ) 的平方成正比。
2024-12-12 16:01:12
455
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅