自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 数理统计学习笔记(持续更新)

通过计算这两个积分,我们可以得到 ( E(X) = \mu )。这是因为 ( \mu ) 是分布的中点,拉普拉斯分布在 ( \mu ) 处对称。通过计算这两个积分,我们可以得到 ( E(X^2) = \mu^2 + 2b^2 )。方差 ( Var(X) ) 定义为 ( E[(X - E(X))^2] )。假设样本X1,X2相互独立且服从拉普拉斯分布,那么交叉项E(X_1X_2)=E(X_1)E(X_2)因此,拉普拉斯分布的方差是 ( 2b^2 ),这表明方差与尺度参数 ( b ) 的平方成正比。

2024-12-12 16:01:12 456

原创 stable-diffusion-webui的本地部署经验

stable-diffusion-webui的本地部署

2024-11-25 15:52:07 813

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除