pytorch保存训练好的模型

本文介绍了如何在PyTorch中保存和加载模型,包括保存整个模型(model.pth)和仅保存模型参数(model_params.pth),以及对应的加载方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://blog.51cto.com/u_16213376/7938863

在pytorch中,保存训练好的模型可以选择保存整个模型,也可以选择保存模型参数。

import torch
import torch.nn as nn

#定义示例模型
class MyModel(nn.Module):
    def _init_(self):
        super(MyModel,self).__init_()
        self.fc =nn.Linear(10,1)
    def forward(self,x):
        return self.fc(x)

# 创建模型实例并进行训练
model =MyModel()
optimizer =torch.optim.sGD(model.parameters(),lr=0.1)
criterion =nn.MSELoss()

# 训练过程...

1.保存整个模型

# 保存整个模型
torch.save(model,'model.pth')

加载模型

#加载整个模型
model = torch.load('model.pth',map_location = 'cuda:0')

2.保存模型参数

# 保存模型参数
torch.save(model.state_dict(),'model_params.pth')

加载模型

# 创建模型实例
model = MyModel()

# 加载模型参数
model.load_state_dict(torch.load('model_params.pth'))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值