随处可见的红黑树学习总结笔记

目录

一、背景

二、红黑树作用和用途

1、用法

2、用途

三、红黑树的性质

四、代码实现

1、定义

2、旋转

3、插入

4、删除

5、遍历和变色


一、背景

二叉搜索树(BST),在极端情况下,会退化为单支树,查找效率从 O(log2n) 退化为 O(n)。主要原因就是BST不够平衡(左右子树高度差太大)。既然如此,那么我们就需要通过一定的算法,将不平衡树改变成平衡树。因此,AVL树就诞生了。AVL要求左右子树的高度差不能超过1,是严格平衡的二叉搜索树,为了维持这种严格平衡,每次插入和删除的时候都需要旋转操作。在频繁插入、删除的场景下,AVL的性能会大打折扣。红黑树通过牺牲严格的平衡性质,换取减少每次插入和删除的旋转操作。

二、红黑树作用和用途

1、用法

(1)key, value ---> 主要用于查找

(2)中序遍历是顺序的 --> 主要用于查找范围

2、用途

(1)map

(2)nginx timer定时器

(3)定时器

(4)cfs 进程管理

(5)内存管理(首地址做key,内存长度做value)

三、红黑树的性质

  • 每个节点是红的或者黑的
  • 根节点是黑的
  • 每个叶子节点是黑的
  • 如果一个节点是红的,则它的两个儿子都是黑的
  • 对每个节点,从该节点到其子孙节点的所有路径上的包含相同数目的黑节点

四、代码实现

1、定义

typedef int KEY_TYPE;

#define RBTREE_ENTRY(name, type)           \
    struct name {                          \
        unsigned char color;               \
        struct type *left;                 \
        struct type *right;                \
        struct type *parent;               \
    }   

//红黑树节点,先定义一个节点的性质,再定义头尾指针
typedef struct _rbtree_node
{
#if 0
    unsigned char color;            //颜色
    struct _rbtree_node *left;      //左子树
    struct _rbtree_node *right;     //右子树

    struct _rbtree_node *parent;    //父节点,旋转用
#else
    RBTREE_ENTRY(, _rbtree_node) node; //type类型可变
#endif
    /*只要符合以上4条性质,就是红黑树*/

    KEY_TYPE key;                   //用于对比,通过key值查找
    void *value;

}rbtree_node;

typedef struct _rbtree 
{
    rbtree_node *root;  //根节点
    rbtree_node *nil;   //通用节点、空节点,用于判断叶子节点(所有叶子节点都指向nil,若不指向nil则不是叶子节点)。【不是NULL】
}rbtree;

/********以上是红黑树的定义, 但有个问题:
 * 4条性质被写死了,最好的是把红黑树的性质封装成模板RBTREE_ENTRY,key、value做业务使用
 * ***********/

2、旋转

        当红黑树性质被破坏时,触发旋转,进行调整,即2个原语操作:左旋和右旋。

旋转的意义是:当有新节点插入、删除时,可能导致节点不符合红黑树的性质,为了平衡,所以要旋转。类似魔方打乱了,复原时候需要公式,左旋、右旋就是基本公式。

注意:左旋、右旋最大次数就是树的高度,左旋、右旋都不需要改变颜色。

//左旋
void rbtree_left_rotate(rbtree *T, rbtree_node *x) {
    /*要修改的指针方向:
        1.x右子树改为指向b;
        2.y的左子树改为指向x;
        3.x的父节点改为指向y。
        每一个都是双向的,这里要改变6个指针。
    */

	rbtree_node *y = x->right;  // x  --> y  ,  y --> x,   right --> left,  left --> right

    //1. x右子树改为指向b
	x->right = y->left; //1 1    x右子树改为指向b
	if (y->left != T->nil) { //1 2  //判断y的左子树是不是叶子节点,如果不是就要改
		y->left->parent = x;    //y的左子树改为指向x
	}

    //2.y的左子树改为指向x
	y->parent = x->parent; //1 3
	if (x->parent == T->nil) { //1 4    //判断x是不是根节点。x的parent为空,即x是根节点
		T->root = y;                    //把根节点变为y
	} else if (x == x->parent->left) {  //x不是根节点,是根节点的左子树
		x->parent->left = y;            //把根节点的左子树变为y
	} else {                            //x不是根节点,是根节点的右子树
		x->parent->right = y;           //把根节点的右子树变为y
	}

    //3.x的父节点改为指向y
	y->left = x; //1 5
	x->parent = y; //1 6
}

右旋:把左旋反过来即可。

//右旋
void rbtree_right_rotate(rbtree *T, rbtree_node *y) {
    /*
    把左旋的x y互换,left right互换
    */

	rbtree_node *x = y->left;

    //1. 
	y->left = x->right;
	if (x->right != T->nil) {
		x->right->parent = y;
	}

    //2.
	x->parent = y->parent;
	if (y->parent == T->nil) {
		T->root = x;
	} else if (y == y->parent->right) {
		y->parent->right = x;
	} else {
		y->parent->left = x;
	}

    //3.
	x->right = y;
	y->parent = x;
}

3、插入

void rbtree_insert_fixup(rbtree *T, rbtree_node *z) { //插入的z节点是红色的

	while (z->parent->color == RED) { //z ---> RED
        /*
            z的父节点是红色
            z的祖父节点是黑色
            z的叔父节点 不确定
        */
		if (z->parent == z->parent->parent->left) {     //z的父节点是祖父节点的左子树
			rbtree_node *y = z->parent->parent->right;  //祖父节点的右子树,即叔父节点,uncle
			if (y->color == RED) {                      //叔父节点 红色
				z->parent->color = BLACK;
				y->color = BLACK;
				z->parent->parent->color = RED;

				z = z->parent->parent; //z --> RED   z每次回溯时候都是红色
			} else {                                    //叔父节点 黑色

				if (z == z->parent->right) {
					z = z->parent;
					rbtree_left_rotate(T, z);
				}

				z->parent->color = BLACK;
				z->parent->parent->color = RED;
				rbtree_right_rotate(T, z->parent->parent);
			}
		}else {
			rbtree_node *y = z->parent->parent->left;
			if (y->color == RED) {
				z->parent->color = BLACK;
				y->color = BLACK;
				z->parent->parent->color = RED;

				z = z->parent->parent; //z --> RED
			} else {
				if (z == z->parent->left) {
					z = z->parent;
					rbtree_right_rotate(T, z);
				}

				z->parent->color = BLACK;
				z->parent->parent->color = RED;
				rbtree_left_rotate(T, z->parent->parent);
			}
		}
		
	}

	T->root->color = BLACK;
}

//插入
//前提:红黑树在插入任何节点之前,就已经是红黑树
void rbtree_insert(rbtree *T, rbtree_node *z) {

	rbtree_node *y = T->nil;
	rbtree_node *x = T->root;   //根节点

	while (x != T->nil) {       //循环,x!=叶子节点
		y = x;                  //y指向x的parent
		if (z->key < x->key) {  //比x小,插左子树
			x = x->left;
		} else if (z->key > x->key) { //比x大,插右子树
			x = x->right;
		} else { //Exist 已经存在
			return ;
		}
	}
    //x = T->nil; 上面这个循环执行完之后,x插到叶子节点最底,指向的是空

	z->parent = y;
	if (y == T->nil) {              //红黑树为空
		T->root = z;
	} else if (z->key < y->key) {   //
		y->left = z;
	} else {
		y->right = z;
	}

	z->left = T->nil;
	z->right = T->nil;
	z->color = RED;     //不改变黑高,不改变性质,所以是红色

	rbtree_insert_fixup(T, z);  //调整
}

4、删除

void rbtree_delete_fixup(rbtree *T, rbtree_node *x) {

	while ((x != T->root) && (x->color == BLACK)) {
		if (x == x->parent->left) {

			rbtree_node *w= x->parent->right;
			if (w->color == RED) {
				w->color = BLACK;
				x->parent->color = RED;

				rbtree_left_rotate(T, x->parent);
				w = x->parent->right;
			}

			if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
				w->color = RED;
				x = x->parent;
			} else {

				if (w->right->color == BLACK) {
					w->left->color = BLACK;
					w->color = RED;
					rbtree_right_rotate(T, w);
					w = x->parent->right;
				}

				w->color = x->parent->color;
				x->parent->color = BLACK;
				w->right->color = BLACK;
				rbtree_left_rotate(T, x->parent);

				x = T->root;
			}

		} else {

			rbtree_node *w = x->parent->left;
			if (w->color == RED) {
				w->color = BLACK;
				x->parent->color = RED;
				rbtree_right_rotate(T, x->parent);
				w = x->parent->left;
			}

			if ((w->left->color == BLACK) && (w->right->color == BLACK)) {
				w->color = RED;
				x = x->parent;
			} else {

				if (w->left->color == BLACK) {
					w->right->color = BLACK;
					w->color = RED;
					rbtree_left_rotate(T, w);
					w = x->parent->left;
				}

				w->color = x->parent->color;
				x->parent->color = BLACK;
				w->left->color = BLACK;
				rbtree_right_rotate(T, x->parent);

				x = T->root;
			}

		}
	}

	x->color = BLACK;
}


//删除
rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) {

	rbtree_node *y = T->nil;
	rbtree_node *x = T->nil;

	if ((z->left == T->nil) || (z->right == T->nil)) {
		y = z;
	} else {
		y = rbtree_successor(T, z);
	}

	if (y->left != T->nil) {
		x = y->left;
	} else if (y->right != T->nil) {
		x = y->right;
	}

	x->parent = y->parent;
	if (y->parent == T->nil) {
		T->root = x;
	} else if (y == y->parent->left) {
		y->parent->left = x;
	} else {
		y->parent->right = x;
	}

	if (y != z) {
		z->key = y->key;
		z->value = y->value;
	}

	if (y->color == BLACK) {
		rbtree_delete_fixup(T, x);
	}

	return y;
}

5、遍历和变色

rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) {

	rbtree_node *node = T->root;
	while (node != T->nil) {
		if (key < node->key) {
			node = node->left;
		} else if (key > node->key) {
			node = node->right;
		} else {
			return node;
		}	
	}
	return T->nil;
}


void rbtree_traversal(rbtree *T, rbtree_node *node) {
	if (node != T->nil) {
		rbtree_traversal(T, node->left);
		printf("key:%d, color:%d\n", node->key, node->color);
		rbtree_traversal(T, node->right);
	}
}

推荐一个零声学院免费公开课程,个人觉得老师讲得不错, 分享给大家:[Linux,Nginx,ZeroMQ,MySQL,Redis, fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker, TCP/IP,协程,DPDK等技术内容,点击立即学习:

https://course.0voice.com/v1/course/intro?courseId=5&agentId=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值