- 博客(113)
- 收藏
- 关注
原创 应用集成平台-系统之间的桥梁-思路分享
集成平台作为系统间的"前台服务员",提供三种核心场景:1)页面重定向(带安全跳转机制);2)HTTP API调用(后台数据获取)3)消息广播(群发通知)。平台采用严格的安全机制,包括Token认证、SM4加密、防重复请求等技术保障。文中分步骤说明了各场景的调用流程,包括必要的接口、参数准备和加密要求,并提供了常见错误解决方案。最后强调必须遵守的安全规则,如Token使用规范、数据加密要求等。集成平台通过统一入口和安全认证机制,实现了系统间安全高效通信
2025-12-16 23:43:50
686
原创 不知不觉已经写博客3年了
一、机缘:从 “自救笔记” 开始的创作。二、收获:近万同行的认可,是意外也是动力。三、日常:博客是我的 “Java 开发第二大脑”。四、憧憬:把 “笔记” 写成 “能帮人的指南”。
2025-09-12 10:18:50
1060
原创 Gateway网关层灰度方案—xx互联网医院系统灰度发布设计与思路详解
本文介绍了一种基于Spring Cloud微服务架构的灰度发布方案,该方案已在某地区互联网医院系统中成功应用。系统采用网关层+负载均衡器的设计思路,通过请求头驱动流量路由,实现灵活可控的灰度发布。核心架构包含配置管理层、网关层、负载均衡层和业务服务层,支持多维度灰度判断、上下文透传和安全降级机制。该方案具有轻量级集成、无侵入式设计等特点,有效满足了医疗行业对系统稳定性的严格要求。
2025-07-27 21:34:49
1209
2
原创 企业级 Java 应用灰度发布设计方案与实践全解析
摘要:灰度发布作为互联网产品迭代的关键技术,通过渐进式部署实现风险可控、快速验证和平稳过渡。文章系统剖析了6种主流实现方案:代码硬编码、配置中心、网关层、服务网格、Kubernetes Ingress和Java Agent,对比了各方案的技术复杂度、业务侵入性和适用场景。针对中大型系统,推荐采用配置中心或网关层方案实现灰度规则与业务解耦;云原生环境建议结合服务网格或K8s Inress;遗留系统可采用Java Agent改造。
2025-06-25 22:58:03
1430
原创 Spring Plugin框架应用实践:医院多租户客户端动态路由方案解析
本文以医院多租户系统为例,探讨了基于SpringPlugin框架实现动态业务路由的解决方案。通过策略模式设计插件接口,结合PluginRegistry实现策略自注册和动态匹配,有效解决了SaaS系统中客户需求差异化的痛点。文章详细解析了核心实现机制,包括插件定义、策略枚举、动态路由控制等关键技术点,并总结了配置驱动扩展的设计优势。该方案已在三甲医院落地验证,具有核心模块零修改、策略间完全隔离、支持热部署等特点,为类似场景提供了可复用的架构范式。
2025-06-05 16:07:21
1074
原创 Redis延时队列在订单超时未报到场景的应用分享
Redis 延时队列是一种特殊的队列,它允许元素在指定的时间后才被消费。在 Redis 中,通常可以使用有序集合(Sorted Set)或 Redisson 提供的延迟队列来实现。有序集合的分数可以用来表示元素的过期时间,通过不断轮询有序集合,当分数小于当前时间时,就将元素取出消费。而 Redisson 则提供了更方便的 API 来实现延时队列,它内部封装了很多复杂的操作,让开发者可以更简单地使用。
2025-03-29 10:46:30
1109
原创 关于java对接微信公众号(对接百度AI实现图片文字识别,对接聚合数据实现笑话、谜语大全,成语接龙等功能)
关于java对接微信公众号(对接百度AI实现图片文字识别,对接聚合数据实现笑话、谜语大全,成语接龙等功能):只是自己学习使用,所以有点不规范,请见谅。本文直接附上源码与效果图,具体操作步骤请参考另一篇文章:http://t.csdnimg.cn/PQu25
2024-04-26 17:51:37
933
2
原创 关于JAVA如何对接海康威视(iSecure Center综合安防管理平台)门禁和摄像头视频取流
根据自己的需求灵活选用对接方式。我们客户购买了海康的综合安防管理平台,经与海康交流过后,我这里选择直接通过调用海康的综合安防管理平台的Open Api进行对接这篇文章只包含java如何对接海康威视,不涉及前端具体技术需求:对接海康威视的视频与门禁。(1)大屏可视化,实现视频的取流,摄像头监控实时预览。(2)获取摄像头监控点与门禁设备的状态,是否运行正常(3)获取门禁设备的事件,用户进出情况记录。大致对接流程:注册登录后,在场景方案中选择基础对接,先了解接口安全认证规则,确保必要参数客户/海康已经提供,
2024-04-25 13:30:35
13653
3
原创 软件设计师—错题整理—考试通过总结
本文分享了软考备考经验与常见错题解析。备考方面,建议快速过一遍知识点后通过网站刷题(51CTO或希赛),重点整理错题并避免死磕单一题型。考试时优先完成会做的题目。 文章还详细解析了17道典型考题,涵盖数据结构(哈夫曼树、三对角矩阵)、算法(排序比较次数)、操作系统(页式存储)、网络(IP子网划分)等内容,并给出解题思路和答案。例如,通过公式计算三对角矩阵元素位置、分析不同排序算法的比较次数等。 备考需掌握核心概念和计算方法,通过刷题巩固知识点,考试时合理安排时间。文中错题解析可作为重点复习资料。
2025-12-28 17:24:38
647
原创 Spring Boot + JUnit 5 + Mockito + JaCoCo 单元测试实战指南
本文详细介绍了如何从零搭建SpringBoot测试环境。主要内容包括:1)单元测试的必要性,如快速发现问题、提高代码质量;2)所需工具(JUnit5、Mockito、JaCoCo);3)环境搭建步骤,包括创建项目、添加测试依赖和配置JaCoCo插件;4)不同场景的测试写法,如纯单元测试和Controller层测试;5)常见问题解答和避坑指南。文章强调要避免滥用@SpringBootTest,推荐使用Mockito进行快速测试,并提供了测试覆盖率报告生成方法。
2025-12-24 23:59:21
698
原创 java八股文-(spring cloud)微服务篇-参考回答
微服务相关八股文-spring-cloud,spring-cloud-alibaba
2025-08-17 22:51:00
1125
原创 java八股文-(spring、mybatis)框架篇面试题-参考回答
框架篇-java八股文-spring、springboot、mybatis相关
2025-08-14 10:10:14
1016
原创 大数据量下分页查询性能优化实践(SpringBoot+MyBatis-Plus)
大数据量分页查询优化方案 分页查询是高频需求,但数据量大时传统方案存在性能瓶颈。本文基于SpringBoot+MyBatis-Plus技术栈,从三个层级提供解决方案: 初级方案:MyBatis-Plus原生分页,适合万级数据,但count查询和limit offset在数据量大时性能下降明显。 中级优化:通过禁用count查询、直接使用limit语句提升十万级数据场景的性能,需注意SQL注入风险。 高级方案:游标分页(基于唯一键)解决百万级以上数据问题,性能稳定但仅支持顺序分页
2025-08-11 17:36:00
1775
原创 别再混淆了!经典延迟双删 vs Cache Aside + 延迟双删,一文看懂到底差在哪
摘要:本文深入剖析了延迟双删的两种不同应用场景及实现方式。经典延迟双删(先删缓存、写库、再删缓存)主要用于解决并发读写顺序导致的脏读问题,但会影响缓存命中率;而Cache Aside+延迟补偿删除(先写库、删缓存、再删缓存)则针对删除缓存失败或延迟问题,对命中率影响较小。文章通过时序图、代码示例和场景对比表格,清晰展示了两种方案的适用场景和选择依据,并给出实用建议:经典延迟双删适合高并发敏感场景,Cache Aside+补偿删除更适合常规业务需求。最后还提供了延迟时间设置、异步处理等实用技巧。
2025-08-05 11:01:42
1025
原创 Java生态中—分布式缓存 VS 本地缓存
Java缓存技术选型指南:本地缓存与分布式缓存对比 本文深入探讨了Java开发中常用的缓存技术,重点分析了本地缓存与分布式缓存的区别及应用场景。本地缓存(如Caffeine、Guava Cache)具有极致性能但容量有限,适合单机高频访问场景;分布式缓存(如Redis)支持多服务共享数据,适合集群环境下的数据一致性需求。文章通过代码示例展示了ConcurrentHashMap、Guava Cache、Caffeine和Ehcache等主流本地缓存框架的特点及适用场景,帮助开发者根据业务需求选择最佳缓存方案。
2025-07-31 15:21:11
985
原创 Java生态中主流的熔断技术介绍及选型建议
分布式系统中,熔断机制是保障稳定性的核心技术,主流方案包括Hystrix、Resilience4j和Sentinel。Hystrix功能全面但已停更,适合遗留系统;Resilience4j轻量高效,支持现代Java技术栈;Sentinel专为高并发设计,提供动态规则配置。本文详细解析了各框架的技术原理、优劣势、适用场景及配置示例,帮助开发者根据项目需求进行合理选型。
2025-07-31 11:38:15
1171
原创 从 0 到 1 学会 Resilience4j——Java 服务稳如老狗的“护身符”(小白也能看懂)
在微服务架构中,服务之间的调用如同 “多米诺骨牌”,一个服务的故障可能引发级联失败。Resilience4j 正是为此而生的轻量级容错库,它通过熔断器、限流、重试等机制,让系统在面对网络波动、服务宕机时依然保持稳定。想象一个电商系统:当库存服务因流量激增而响应缓慢时,Resilience4j 会自动断开连接(熔断器),防止其他服务被拖垮;同时限制每秒请求数(限流),并在故障恢复后自动重试(重试机制)。这就像给系统穿上 “防弹衣”,让它在复杂环境中屹立不倒。
2025-07-28 23:34:37
932
原创 Resilience4j 实战—使用方式及配置详解
Resilience4j提供了三种灵活的使用方式:1)注解形式(推荐Spring Boot项目),通过@CircuitBreaker等注解实现低侵入式配置;2)代码配置形式,手动创建Config实现动态参数调整;3)配置文件形式,通过yaml集中管理参数,支持环境差异化配置。配置层级按功能类型→实例名→参数结构定义,支持全局默认配置和批量匹配接口两种批量生效方式。全局配置通过configs.default设置基础参数,批量匹配可通过自定义AOP切点对特定包下所有接口统一应用熔断等功能,实现灵活的系统保护策略
2025-07-28 22:51:44
1166
原创 【Spring Cloud Gateway 实战系列】高级篇:服务网格集成、安全增强与全链路压测
在微服务架构向服务网格演进的过程中,Spring Cloud Gateway 可与 Istio 形成互补 ——Gateway 负责南北向流量(客户端到集群)的入口管理,Istio 负责东西向流量(集群内服务间)的治理。两者结合能实现全链路流量可视化与精细化控制。
2025-07-24 08:30:00
870
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅