Hello!大家好,我是@学生小羊,今天讲讲最大公因数和最小公倍数。
在教科书中,求A与B最大公因数/最小公倍数的方法有以下几个:
1.集合法(画集合图);
2.列举法(列举出A,B的因数/倍数,找他们公有的因数/倍数);
3.短除法;
4.分解质因数。
(详见五年级数学最大公因数与最小公倍数求解及原理_哔哩哔哩_bilibili)
但这些方法在编程中都太过复杂了。
其实,求最大公因数的方法还有一种:辗转相除法。
辗转相除法:先将两个数中较大的一个作为被除数,较小的一个作为除数,用被除数除以除数得到余数,将除数作为新的被除数,将余数作为新的除数,重复此过程,直到余数为0,此时的除数就是最大公因数。
举例——求18和27的最大公因数:
27÷18=1...9
18÷9=2(...0)
(18,27)=9
求两数的最小公倍数,更简单:
[A,B]=A×B÷(A,B)
([A,B]表示A和B的最小公倍数,(A,B)表示A和B的最大公因数)
具体代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int a,b;//求a,b的最大公因数和最小公倍数。
cin>>a>>b;
if(a<b) swap(a,b);//确保a>b。
int beichushu=a,chushu=b,yushu=a%b;
while(yushu)
{
beichushu=chushu,chushu=yushu;
yushu=beichushu%chushu;
}
cout<<chushu<<" ";//最大公因数。
cout<<a*b/chushu;//最小公倍数。
return 0;
}
这是算法,其中chushu变量即为a,b的最大公因数,其实c++函数库中已经给出了一个求最大公因数的函数:__gcd(a,b);
关于最小公倍数,有这么一条等式:a×b=(a,b)×[a,b]
#include<bits/stdc++.h>
using namespace std;
int main()
{
int a,b;//求a,b的最大公因数和最小公倍数。
cin>>a>>b;
cout<<__gcd(a,b)<<" ";//最大公因数。
cout<<a*b/__gcd(a,b);//最小公倍数。
return 0;
}
怎么样,你学会(废)了吗?