Spark
庄--
虽不能至,心向往之
展开
-
spark性能调优:开发调优
本文转载自:https://blog.csdn.net/LW_GHY/article/details/51420027 在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。 然而,通过Spark开发出高性能的大数据计算作业,并不...转载 2019-04-30 21:41:36 · 154 阅读 · 0 评论 -
spark性能调优:资源优化
本文转载自:https://blog.csdn.net/LW_GHY/article/details/51419977 在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致...转载 2019-04-30 21:38:18 · 160 阅读 · 0 评论 -
spark性能优化:shuffle调优
本文转载自:https://blog.csdn.net/LW_GHY/article/details/51419760 调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优。但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发...转载 2019-04-30 21:43:47 · 211 阅读 · 0 评论 -
spark性能优化:数据倾斜调优
本文转载自:https://blog.csdn.net/LW_GHY/article/details/51419877 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 数据倾斜发生时的现象 1、绝大多数task执行得都非常快,但个别t...转载 2019-04-30 21:45:33 · 266 阅读 · 0 评论 -
Spark面对OOM问题的解决方法及优化总结
本文转载自: http://blog.csdn.net/yhb315279058/article/details/51035631 Spark中的OOM问题不外乎以下两种情况 map执行中内存溢出shuffle后内存溢出 map执行中内存溢出代表了所有map类型的操作,包括:flatMap,filter,mapPatitions...转载 2019-05-01 08:46:35 · 233 阅读 · 0 评论