自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(0)
  • 收藏
  • 关注

空空如也

20章完结Java高手提薪精选-Spring源码解析到手写核心组件

一、引言:Spring框架的架构哲学 Spring框架作为Java企业级开发的事实标准,其成功不仅源于其丰富的功能特性,更在于其精妙的核心设计。Spring源码的核心组件构成了整个框架的骨架,理解这些组件的设计原理和工作机制,对于深入掌握Spring框架至关重要。Spring的设计哲学可以概括为三点:轻量级、非侵入性和模块化。这些理念贯穿于Spring的各个核心组件之中,使得框架既保持了高度的灵活性,又能提供强大的企业级功能支持。 Spring框架的核心组件并非孤立存在,而是通过精心设计的接口和抽象层相互协作,形成一个有机整体。这些组件包括IoC容器、Bean生命周期管理器、资源加载系统、AOP框架、事务管理模块等,它们共同支撑起了Spring的整个生态系统。通过对这些核心组件的剖析,我们不仅能够更好地使用Spring框架,还能从中学习到优秀软件架构的设计思想。

2025-04-17

20周程序员数学体系课

一、程序员在不同的职业阶段和工作领域中,对数学的需求程度会有所不同。以下是一些普遍认为对程序员较为重要的数学知识点: 基本数学概念: 数学符号:加减乘除、等于、不等于等基本运算符。 代数:变量、方程求解、函数表达与分析。 几何:坐标系、向量、点、直线、平面的基本性质,用于理解图形界面和空间逻辑。 离散数学: 布尔代数与逻辑:这是计算机科学的基础,用于程序逻辑设计。 图论:研究点与边的关系,对网络编程、数据库设计、路径寻找等问题至关重要。 集合论:理解和操作数据结构的基础。 排列组合与概率:在算法设计、数据分析、密码学等方面有用。 递归与分治策略:解决问题的常见方法,尤其是在算法设计中。 统计学与概率论: 在数据分析、机器学习、A/B测试、推荐系统等领域,概率分布、假设检验、贝叶斯定理等是关键概念。 有助于理解数据的不确定性,做出基于数据的决策。 线性代数:

2025-04-15

[14章完结版]RAG全栈技术从基础到精通 ,打造高精准AI应用

一、7 种 RAG 模式 Naive RAG 是最基础的架构,包含简单的文档检索、处理和生成响应的流程 Retrieve-and-rerank 在基础 RAG 上增加了重排序步骤,可以优化检索结果的相关性 Multimodal RAG 能够处理图像等多种类型的数据,不仅限于文本 Graph RAG 利用图数据库增强知识连接,可以更好地理解文档间的关系 Hybrid RAG 结合了多种技术的优势,包含图结构和传统检索方法 Agentic RAG Router 使用 AI Agent 来路由和处理查询,可以选择最适合的处理路径 Agentic RAG Multi-Agent 使用多个专门的 AI Agent 协同工作,可以调用不同的工具(如向量搜索、网页搜索、Slack、Gmail 等) 二、认识 RAG RAG 的核心思想是将信息检索与生成模型相结合。在传统的 LLM 应用中,模型仅依赖训练时学到的知识来回答问题,这导致了知识更新困难、回答可能过时或不准确等问题。而 RAG 系统通过在生成回答前主动检索相关信息,将实时、准确的知识作为上下文提供给模型,从而显著提升了回答的质量和可靠性。

2025-04-14

C#+WPF+Opencv模块化开发视觉对位运动控制系统教程

一、WPF 在工控领域的优势 WPF(Windows Presentation Foundation)因其强大的功能和灵活性,已成为工控上位机开发的首选技术之一。 WPF 提供了丰富的控件、图形和动画效果,以及与硬件设备的交互能力,非常适合用来构建复杂的工业自动化和监控系统。 几个关键因素,解释为什么 WPF 能在工控上位机开发中占据重要地位,并提供一些示例代码来说明其应用。 1、强大的图形界面支持 WPF 提供了丰富的图形绘制功能,支持矢量图形、动画、3D图形等,非常适合用于开发可视化程度高的工控界面。 另外,XAML(可扩展应用程序标记语言)使得界面设计与逻辑代码分离,有助于提高开发效率。 2、跨平台兼容性 虽然 WPF 最初是为 Windows 平台设计的,但随着 .NET Core 和 .NET 5+ 的推出,现在可以利用这些框架来创建跨平台的应用程序,这意味着一套代码可以在不同操作系统上运行,这对于工控系统的部署而言是一个巨大的优势。 3、丰富的三方库支持 C# 拥有庞大的生态系统,提供了大量的第三方库和工具。 支持多种工业通信协议,如 Modbus、EtherCAT、OPC-UA 等。 可以轻松实现与 PLC、传感器等硬件设备的通信,可以缩短开发周期

2025-04-07

2025新品java-antd-web3全栈dapp开发课程

一、学习 DApp 开发有什么作用? 随着区块链技术的迅猛发展,DApp将是Web3的核心应用形式。对于开发者来说,学习DApp开发不仅是一项技能的提升,更是拥抱未来数字经济的一种方式。那么,学习DApp开发究竟能带来哪些作用和价值? 1、引领未来趋势DApp是区块链生态的核心组成部分,涵盖金融、游戏、社交、供应链等多个领域。随着越来越多的企业和开发者投身Web3,DApp的应用范围持续扩展。掌握DApp开发技能,让你能够在这个新兴领域中抢占先机,为个人职业发展铺平道路。 2、海量就业机会区块链行业对DApp开发者的需求正在不断攀升。无论是创业公司还是行业巨头,都需要具备DApp开发能力的技术人才。相关职位薪资高、成长空间大,学习DApp开发可以让你在就业市场中占据有利位置。 二、DAPP与传统APP的区别 与传统中心化应用相比,DAPP具有几个显著差异: 信任机制:传统APP依赖中心化机构的信任,而DAPP通过代码和数学算法建立信任 数据控制:传统APP数据由运营方控制,DAPP数据由网络参与者共同维护 抗审查性:DAPP一旦部署,很难被单一实体关闭或审查 透明度:DAPP的代码和交易记录通常对所有人可见

2025-04-02

多智能体开发框架之LangGraph全面剖析实战教程

LangGraph是一个专注于构建有状态、多角色应用程序的库,它利用大型语言模型(LLMs)来创建智能体和多智能体工作流。这个框架的核心优势体现在以下几个方面: 周期性支持:LangGraph允许开发者定义包含循环的流程,这对于大多数中智能体架构来说至关重要。这种能力使得LangGraph与基于有向无环图(DAG)的解决方案区分开来,因为它能够处理需要重复步骤或反馈循环的复杂任务。 高度可控性:LangGraph提供了对应用程序流程和状态的精细控制。这种精细控制对于创建行为可靠、符合预期的智能体至关重要,特别是在处理复杂或敏感的应用场景时。 持久性功能:LangGraph内置了持久性功能,这意味着智能体能够跨交互保持上下文和记忆。这对于实现长期任务的一致性和连续性非常关键。持久性还支持高级的人机交互,允许人类输入无缝集成到工作流程中,并使智能体能够通过记忆功能学习和适应。 在多智能体开发中,LangGraph是一个相对较少被提及的概念,因为它不是一个广为人知的框架。然而,我们可以讨论一些与多智能体系统开发相关的框架和工具,这些框架和工具可以帮助开发者构建复杂的智能体系统。

2025-03-28

11章全SpringBoot 3.x + Netty + MQTT 实战物联网智能充电桩

一、什么是物联网(IoT)? 物联网(Internet of Things,简称 IoT)是指通过互联网连接和通信的物理设备和对象的网络。它是一个由传感器、软件和通信设备组成的系统,可以使各种设备和物品相互连接,并通过数据交换和分析来提供更智能、高效和自动化的功能。 物联网的主要目标是将真实世界的物体与互联网相连,使其具备感知、交互和通信的能力。通过物联网,可以实现智能家居、智慧城市、工业自动化、农业监测、智能交通等应用。 二、为什么需要物联网? 物联网的出现主要是为了解决日常生活和工作中的一些实际问题。例如,在智能家居中,可以通过物联网连接家中的各种设备,如智能灯泡、智能插座、智能门锁等,从而实现远程控制、自动化调节和能源管理,提高家居的舒适度和能源利用效率。 此外,物联网在工业领域也发挥着重要作用。传统的工业生产过程通常需要大量的人力和物力投入,而物联网可以通过连接和监控各种设备和环境参数,实现生产过程的自动化和优化,提高生产效率和产品质量。例如在石油行业,可以利用物联网技术来监测阀门的状态和运行情况。通过安装传感器和执行器在阀门上,可以实时监测阀门的开启、关闭状态、温度、压

2025-03-26

完结20周LLM应用开发平台特训营体系课

一、什么是AI? 人工智能(AI,Artificial Intelligence)是指让机器具备人类智能的能力,使其能够执行如感知、推理、决策、学习和创造等任务。AI 的发展经历了多个阶段,从最早的基于规则的专家系统,到如今的深度学习和神经网络驱动的智能系统,使得 AI 具备了更强的学习能力和泛化能力。 AI 主要包括以下几个关键领域: 计算机视觉(CV):如人脸识别、图像分类、目标检测等。 自然语言处理(NLP):如机器翻译、文本摘要、语音识别等。 机器人技术:如自动驾驶、机械臂、智能家居等。 决策系统:如推荐系统、智能调度、金融风控等。 其中,自然语言处理(NLP) 是 AI 领域的一个重要分支,而 LLM(大语言模型)正是 NLP 领域的一项突破性技术。 二、AI与LLM 的关系 LLM(Large Language Model,大语言模型)属于 AI 领域的一个重要子集,它是 AI 发展的高级阶段,专门用于处理和生成自然语言。AI 主要提供了 LLM 发展的基础技术,而 LLM 是 AI 在自然语言处理上的具体应用。

2025-03-25

已完结体系课-LLM算法工程师全能实战训练营

一、什么是LLM? LLM是一种使用深度学习算法来处理语言数据的模型。与传统的基于规则的语言处理系统不同,LLM依赖于大量的语料数据来学习语言的规律和结构。其训练过程主要是通过大量的文本数据,使用大规模的神经网络模型,来捕捉语言中的语法、语义、上下文关系等信息。 二、LLM的特点 规模庞大:LLM通常由数亿、数十亿甚至数千亿个参数构成,这使它们能从海量的文本数据中学习到丰富的语言特征。多任务能力:LLM不仅能够完成文本生成任务,还能进行问答、翻译、摘要生成等多种任务。上下文建模:LLM擅长理解长文本中的上下文关系,可以考虑到更长的依赖关系,而不像传统语言模型只能处理短范围的上下文。 三、LLaMA —— Meta 大语言模型 LLaMA 语言模型全称为 “Large Language Model Meta AI”,是 Meta 的全新大型语言模型(LLM),这是一个模型系列,根据参数规模进行了划分(分为 70 亿、130 亿、330 亿和 650 亿参数不等)。

2025-03-12

完结28章Go开发疑难杂症终结者通关指南

Go高手必修课--直击Go开发中各类疑难问题解决,今天给大家总结一下关于Go语言项目开发的常见问题与解决方法。 Go语言作为一种高性能、简洁易用的编程语言,越来越多的开发者开始选择它作为项目开发的首选语言。然而,在实际的项目开发过程中,我们也会遇到一些常见的问题。本文将介绍一些这样的问题,并提供相应的解决方法,帮助开发者更好地应对这些挑战。 问题一:依赖管理 在Go语言的项目开发中,依赖管理是一个常见的问题。由于Go语言的模块化特性,项目往往会依赖于许多第三方包和库。而如何有效地管理这些依赖,保证项目的稳定性和可维护性,是一个需要仔细考虑的问题。 解决方法: 使用Go Modules:Go Modules是Go语言官方推荐的依赖管理工具。通过使用Go Modules,可以轻松地管理项目的依赖关系,并保证依赖的版本一致性。 使用版本控制工具:对于一些没有集成Go Modules的项目,可以使用版本控制工具(例如Git)来管理依赖。通过在项目中添加vendor目录,并将依赖的包放入其中,可以有效地管理项目的依赖关系。 使用版本锁定:为了避免依赖的包在更新版本后引发兼容性问题,可以使用

2024-12-10

C++ Qt6 QML入门进阶与项目实战视频教程

一、QML和Qt Quick快速入门 QML是用户界面标记语言。它是一种声明性语言,是Qt框架的一部分。它支持构建流畅的、触摸友好的用户界面。随着触摸屏移动设备的流行,Qt Quick被创建为高度动态的。开发者可以使用最少的代码轻松高效的构建UI。Qt QML模块实现了QML架构,并为开发应用程序提供了对应框架。它定义并实现了语言和基础设施,并提供了应用程序编程接口(API)来集成QML语言、JS和c++。 Qt Quick为QML提供了类型和功能库。它包括交互类型、视觉类型、动画、模型、视图和图形效果。它用于触摸输入、流畅动画和用户体验至关重要的移动应用。Qt QML模块为QML应用程序提供语言和基础设施,而Qt Quick模块提供许多视觉元素、动画和更多模块来开发面向触摸和视觉上吸引人的应用程序。您可以使用QML和Qt Quick控件,而不是使用Qt小部件进行UI设计。Qt Quick支持多种平台,比如Windows、Linux、Mac、iOS和Android。您可以在C++中创建一个自定义类,并将其移植到Qt Quick来扩展其功能。此外,该语言提供了与C++和JS的平滑集成。

2024-12-09

和橘子学AI绘图【440集100实战】

前言: 随着2022年末ChatGPT的走红,AI的潜力逐渐被大众所认可。其中,AI绘画作为新兴技术也随之崭露头角,成为人们不可或缺的好帮手。 AI绘画的基本原理就是让AI为设计师提供设计支持,从而帮助用户完成图形设计。因此,即使你没有设计和绘图的技能,也能轻松实现自己的需求,只需简单地向AI传达信息。目前很多AI绘画的小程序如Midjourney、Stable Diffusion等,都在国内外广受欢迎。 这些小程序不仅能够辅助包装设计、周边产品的研发,还能为数字人在短视频和直播画面中的应用提供支持。此外,越来越多的企业在招募AI绘图师,这也为新兴行业提供了新的机遇。 可以说,AI绘画技术的出现,将会对传统的设计业产生颠覆性的影响,提高了工作和生产效率,替代了基础设计的工作,同时带来了新的行业和职位,让每个人都能快捷高效地完成自己的设计需求。

2024-12-04

完结13章Electron+Vue3+AI+云存储-实战跨平台桌面应用

一、Electron是什么? Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需要本地开发 经验。 二、Electron Fiddle 运行实例 Electron Fiddle 是由 Electron 开发并由其维护者支持的沙盒程序。 我们强烈建议将其作为一个学习工具来安装,以便在开发过程中对Electron的api进行实验或对特性进行原型化。

2024-12-02

完结17章AI助手Copilot辅助Go+Flutter打造全栈式在线教育系统

前言: 随着计算机技术和多媒体技术的不断发展与成熟,越来越多的学习者选择网络平台这一既先进又普遍的学习方式。互联网具有双向交换这一特点,信息交互非常便利,因此使用网络平台这种学习方式和线下实际学习上课相比有着独特的优势,更适合学习者进行更方便的自主学习。在线教育学习系统开发目的是使学校的教学模式模式从线下时时教学方式转变成线上随时管理,为教师和学生提供方便条件。在经过学校提供的数据进行实际调研分析后,了解学校各方面需求情况,对学校已有的教育教学管理模式进行修改完善,在这个基础上修改出—套符合学校需求的网课系统,借此机会熟悉系统开发的流程。随着后期工作对信息管理系统的功能进行不断调整和完善,学校方面的信息管理将越来越依赖于通过系统来处理。所以系统开发也要根据学校教学工作的实际情况来进行调整,使其更加符合学校教师及学生的需求。 一、需求分析 1.1目标用户群体 这些用户可能是学生、家长、教师或教育机构。不同的用户群体有不同的需求。例如,学生可能需要多样化的课程内容和互动学习工具,而教师则需要便捷的教学管理和学生评估系统。 1.2功能需求 明确核心功能需求是开发在线教育系统的关键。以下

2024-12-03

[完结14章附电子书]Springboot+ChatGLM 实战AI数字人面试官系统

一、ChatGLM定义 ChatGLM是由清华技术成果转化的公司智谱AI发布的开源的、支持中英双语问答的对话语言模型系列,并针对中文进行了优化,该模型基于General Language Model(GLM)架构构建,ChatGLM是一款基于人工智能技术的智能聊天机器人,它具备强大的自然语言处理能力,能够理解和回答我们的问题,通过与ChatGLM的对话,我们可以轻松获取各种信息,解决生活中的疑惑,甚至寻求专业建议,ChatGLM的出现,让我们在获取信息、解决问题上更加高效便捷。 二、发展历程 早期对话系统:最初的对话系统基于规则和模板,能够回答特定的问题或执行简单的任务。 统计模型:随后,统计机器学习方法被用于对话系统,使得模型能够处理更多样化的输入。 神经网络:深度学习的兴起带来了基于神经网络的对话系统,这些系统能够生成更自然的回答。 预训练语言模型:BERT、GPT等预训练语言模型的出现极大地提升了对话系统的性能。 专门化的聊天模型:随着技术的进步,出现了专门为聊天设计的模型,如Meena、DialoGPT、ChatGLM等。

2024-11-27

17章AI助手Copilot辅助Go+Flutter打造全栈式在线教育系统

一、什么是Copilot 很多人都在使用Copilot,但是大多数人并不知道它的中文是什么意思,而这也是我在使用1年后才偶然看到的,Copilot中文意思是副驾驶。AI出来后大家一直在讨论AI会不会淘汰程序员,从Copilot的中文名可以看出不会,它的定位是一个副驾驶,偏辅助类的一个工具。 所以Copilot是一个辅助编程的效率工具。研究发现 GitHub Copilot 帮助开发者更快地编码,专注于解决更大的问题,更长时间地保持在流畅状态,并对他们的工作感到更有成就感。 74% 的开发者能够专注于更令人满意的工作 88% 的人感觉更有效率 96% 的开发者在重复任务上更快 二、主要区别 范围:Agent可以执行各种任务,但并非所有任务都涉及对话。对话式 AI 专注于管理和参与自然语言对话,而 Copilot 则是协助用户在软件应用程序中完成特定任务的专用工具。 功能:Agent旨在完成任务,其中可能包括自动化、决策或使用工具。对话式人工智能专门用于通过对话与用户互动,而 Copilot 则用于提供实时、情境感知的帮助或建议,通常在编码或写作环境中。 用例:Agent可用于各种应

2024-11-26

uniapp+vue3+云开发全栈开发同城配送鲜花小程序任意商城

今天开始使用 vue3 + uni-app 搭建一个电商购物的小程序,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GitHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关注本专栏,学习更多前端uni-app知识。然后开篇先简单介绍一下本项目用到的技术栈都有哪几个方面(阅读此次项目实践文章能够学习到的技术): uni-app:跨平台的应用开发框架,基于vue.js可以一套代码同时构建运行在多个平台。 pnpm:高性能、轻量级npm替代品,帮助开发人员更加高效地处理应用程序的依赖关系。 vue3:vue.js最新版本的用于构建用户界面的渐进式JavaScript框架。 typescript:JavaScript的超集,提供了静态类型检查,使得代码更加健壮。 pinia:vue3构建的Vuex替代品,具有响应式能力,提供非常简单的 API,进行状态管理。 uni-ui:基于vue.js和uni-app的前端UI组件库,开发人员可以快速地构建跨平台应用程序。

2024-11-25

完结28章数据分析50+高频场景实战 业绩提升立竿见影

前言: 本文章从 MySQL 查询、Quick BI 报表、Python 数据分析、业务思维、分析模型这五个数据分析师核心技能出发,全程使用提问式的教学形式(基于职场二人,师傅带徒弟),对数据分析中的50+高频率工作场景实战任务,进行生动有趣的讲解,每个任务按照“任务背景、真实任务内容、完成任务”的线索搭建结构完整数据分析技能体系。帮助学员从零开始无痛入门数据分析,并最后成为公司不可或缺的数据分析高值价人才。 一、MySQL的三种查询方法 1、投影查询 * : 代表所有字段(列) 查询所有, 这个所有分成两个部分 (1)所有的行数据 (2)所有的列数据 select * from student; 这种情况会造成一种后果: 当我们数据量比较大,且数据表的字段比较多的时候, 效率很低; 真实情况,可能我们不需要这么多数据,比如: 只需要学生的 姓名和性别; 查询出来的这些数据是存放在什么地方的? =>内存 =>查询所有的字段是比较消耗内存;

2024-11-15

PyQT6 GUI编程开发桌面软件(2024新版)

PyQt6是一个创建图形用户界面应用程序的工具包,它是Qt6的Python绑定。Qt是一个跨平台的C++图形用户界面应用程序开发框架,广泛用于开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务器。PyQt6使得Python程序员能够利用Qt的强大功能,轻松创建具有丰富功能和美观界面的应用程序。 PyQt6的主要特点包括: 跨平台:可以在Windows、Linux、macOS等操作系统上运行。 丰富的控件:提供了大量的控件(如按钮、标签、文本框等),方便开发者使用。 强大的布局管理:提供了多种布局管理器,可以方便地对控件进行布局。 事件处理:支持各种事件处理,如鼠标点击、键盘输入等。 丰富的API:提供了大量的API,可以方便地进行各种开发操作。 与Qt6的紧密集成:作为Qt6的Python绑定,PyQt6可以访问Qt6的所有功能。 使用PyQt6开发应用程序的一般步骤: 安装PyQt6:可以通过pip安装PyQt6。 导入必要的模块:从PyQt6.QtWidgets模块中导入应用程序、窗口等类。 创建应用程序和窗口:创建一个QApplication对象和一个窗口对象。

2024-11-08

和橘子学AI视频新课上线

一、什么是数字人? 随着人工智能技术的飞速发展,AI数字人作为其前沿应用之一,正逐渐走进公众视野。AI数字人不仅仅是虚拟形象的简单呈现,它们能够模拟人类的语言、表情和行为,甚至在某些领域展现出超越人类的能力。 二、数字人相关的技术? AI数字人的核心是人工智能技术,包括但不限于机器学习、自然语言处理、计算机视觉和语音合成。以下是构建AI数字人的关键技术要素: - 自然语言处理(NLP):使AI能够理解和生成自然语言,实现与人类的流畅对话。 - 机器学习:通过大量数据训练模型,使AI能够不断学习和适应新情况。 - 计算机视觉:让AI能够识别和理解图像内容,实现面部表情和肢体语言的模拟。 - 语音合成:将文本转换为语音,使AI数字人能够发声并与人类交流。 - 深度学习:通过构建复杂的神经网络模型,提高AI在图像和语音识别上的准确性。 三、数字人产业链 当前虚拟数字人理论和技术日益成熟,应用范围不断扩大,产业正在逐步形成、不断丰富,目前已经发展出了由技术层、平台层、应用层组成的产业链结构。

2024-11-05

flutter中级班Get和Dio框架仿网易云播放器课程

在移动应用开发领域,Flutter凭借其跨平台高效开发和出色的性能表现,已成为众多开发者的首选框架。而对于Flutter开发者而言,从中级迈向高级的关键,在于掌握高效的状态管理和网络请求处理。本文将围绕GetX和Dio这两个强大的Flutter框架,探讨如何仿造网易云音乐播放器,打造一款功能丰富、性能优异的音乐应用。 框架选择的艺术:为什么是GetX和Dio? 在Flutter生态系统中,状态管理和网络请求框架的选择至关重要。GetX作为一个轻量级但功能强大的框架,不仅提供状态管理,还囊括了路由管理、依赖注入和国际化支持等功能。它的核心优势在于简洁的语法和出色的性能:无需BuildContext即可进行路由跳转,响应式状态管理极大减少了不必要的UI重绘。 Dio则是Flutter中最受欢迎的网络请求库之一,相较于原生HttpClient,它提供了更简洁的API、拦截器机制、请求取消等高级功能。对于音乐播放器这类需要处理大量网络请求的应用,Dio的拦截器可以统一处理认证、日志记录和错误处理,而文件下载和上传功能则直接满足音频文件的传输需求。 这两个框架的结合,为开发网易云风格的音乐播放器奠定了坚实基础:GetX负责应用内部的状态流转和界面更新,Dio处理与外部的数据交互,各司其职又完美协同。

2025-08-25

[完整版22章]LLM应用全流程开发 全新技术+多案例实战+私有化部署

摘要 本文系统性地探讨了大型语言模型(LLM)应用全流程开发的关键环节,包括前沿技术解析、实战案例展示和私有化部署策略。文章首先介绍了LLM技术的最新进展,然后通过多个行业案例详细阐述了开发流程,最后深入分析了私有化部署的解决方案。研究结果表明,掌握LLM全流程开发能力对企业实现AI转型具有重要价值,而私有化部署则是保障数据安全和满足合规要求的关键。本文为企业和开发者提供了从理论到实践的全面指导。 关键词 大型语言模型;全流程开发;私有化部署;人工智能应用;案例实战 引言 随着人工智能技术的迅猛发展,大型语言模型(LLM)已成为推动各行业数字化转型的核心驱动力。从智能客服到内容生成,从数据分析到决策支持,LLM正在重塑企业的工作方式和业务流程。然而,如何系统性地开发、部署和优化LLM应用,仍然是许多企业和开发者面临的挑战。本文将深入探讨LLM应用全流程开发的关键环节,包括最新技术解析、多行业实战案例和私有化部署方案,为读者提供从理论到实践的全面指导。

2025-08-13

完整33章重构计算机专业课,带你手写四大核心模块,硬核筑基

计算机基础是每一位计算机专业学生必须牢固掌握的知识起点,它构成了理解更复杂概念的认知框架。计算机基础不仅包括计算机的发展历史、基本组成和工作原理,更重要的是培养计算思维——一种运用计算机科学基本概念解决问题、设计系统和理解人类行为的思维方式。 冯·诺依曼体系结构作为现代计算机的基石,其五大组成部分(运算器、控制器、存储器、输入设备和输出设备)至今仍是计算机设计的核心范式。理解这一体系结构有助于后续学习计算机组成原理和操作系统等课程。数据表示与运算则揭示了计算机如何处理信息的本质,包括二进制、八进制、十六进制系统的转换,以及整数和浮点数的表示方法,这些都是编程和硬件设计中不可或缺的基础。 算法基础作为计算机基础的重要组成部分,引入了时间复杂度和空间复杂度的概念,为后续数据结构与算法的学习铺垫。递归思想、分治策略等基本算法范式不仅是解决计算问题的工具,更是培养抽象思维能力的有效途径。计算机基础课程还通常涵盖基本的编程概念,如变量、数据类型、控制结构等,这些构成了后续专业课程学习的共同语言。

2025-08-06

[完整版10章]零代码玩转AI视频制作-10小时速成爆款全攻略

在当今数字化时代,视频内容已成为信息传播的主流形式,而人工智能技术的迅猛发展正在彻底改变视频制作的方式。AI视频制作不仅大幅降低了专业视频制作的门槛,也为内容创作者提供了前所未有的创意可能性。本文将为零基础的初学者提供一份全面的AI视频制作学习指南,从基础概念到高级技巧,帮助您快速掌握这一未来技能。 一、AI视频制作入门基础 AI视频制作是指利用人工智能技术辅助或自动化完成视频创作的过程,它涵盖了从脚本生成、素材创作到后期处理的各个环节。与传统视频制作相比,AI视频制作具有效率高、成本低、创意多样等显著优势。对于零基础学习者而言,了解AI视频制作的基本概念是迈向成功的第一步。 在开始学习之前,您需要准备一些基础工具和知识。硬件方面,一台配置中等的电脑或笔记本电脑即可满足大部分AI视频制作需求;软件方面,可以选择一些用户友好的AI视频制作平台,如Runway、Synthesia或Descript等。此外,了解基本的视频概念如分辨率、帧率、编解码器等将有助于您更快上手。 AI视频制作的核心技术包括生成式对抗网络(GAN)、自然语言处理(NLP)和计算机视觉等。这些技术使得AI能够理解文本指令、生成逼真图像和视频,甚至创造出不存在的虚拟人物。对于初学者来说,不必深入理解这些技术的复杂原理,但了解它们的基本功能将帮助您更好地利用AI工具。

2025-08-04

[6章完整版]AI大模型RAG项目实战课

引言:RAG技术的兴起与价值 在人工智能领域,检索增强生成(Retrieval-Augmented Generation,简称RAG)技术近年来迅速崛起,成为连接大型语言模型(LLM)与外部知识库的桥梁。随着GPT-4、Claude等大模型的普及,人们逐渐意识到,尽管这些模型拥有惊人的语言理解和生成能力,但其知识仍然受限于训练数据,且无法实时更新。RAG技术应运而生,通过将信息检索与文本生成相结合,有效解决了大模型的"知识固化"问题。 RAG的核心思想简单而强大:当大模型需要回答一个问题时,首先从外部知识库中检索相关文档或信息,然后将这些检索到的内容与原始问题一起输入给生成模型,最终产生基于最新、最相关知识的回答。这种方法不仅提高了回答的准确性,还显著减少了模型"幻觉"(即编造虚假信息)的发生。 一、RAG技术架构解析 1.1 RAG系统的基本组成 一个完整的RAG系统通常包含三个关键组件: 检索器(Retriever):负责从海量文档中快速找到与查询相关的片段。常用的检索技术包括密集检索(如使用BERT类模型生成嵌入向量)和稀疏检索(如TF-IDF、BM25等)。 知识库(Knowledge Base):存储结构化或非结构化的文本数据,作为模型的外部知识来源。知识库需要定期更新以保持信息的新鲜度。 生成器(Generator):通常是一个大型语言模型,负责基于检索到的内容和原始问题生成连贯、准确的回答。

2025-08-02

完结9章AI Agent 开发新范式 MCP 从入门到多场景全链路实战

引言:AI Agent的演进与新范式需求 人工智能领域近年来经历了从单一任务模型到通用智能体的重大转变。传统的AI开发模式往往针对特定任务设计独立系统,而现代AI Agent则展现出跨领域、多任务、自主决策的能力。在这一演进过程中,MCP(Model-Compute-Platform)作为一种新兴的开发范式正在崭露头角,它通过整合大模型能力、分布式计算资源和统一开发平台,为AI Agent的开发带来了革命性的变化。 随着GPT-4、Claude、LLaMA等大模型的涌现,AI Agent的开发不再是从零开始训练模型,而是转变为如何有效利用和组合这些强大的基础模型。本文将深入探讨MCP范式的核心要素,并展示如何从零开始构建一个AI Agent,最终实现多场景全链路的实战应用。 一、MCP范式解析:模型、计算与平台的协同 1.1 Model(模型层):大模型为核心的智能基础 在MCP范式中,模型层不再局限于单一算法,而是以大模型为核心的基础能力集合。这包括: 基础大模型:如GPT-4、Claude等通用语言模型,提供基础的语言理解和生成能力 领域适配模型:通过微调或提示工程使基础模型适应特定领域 辅助模型:如嵌入模型、分类模型等,补充大模型的能力短板

2025-08-01

2025徐老师React18&19课程含项目实战课程

一、React技术演进与版本概览 React作为当今最流行的前端框架之一,自2013年发布以来经历了多次重大更新。React 18于2022年3月发布,带来了并发渲染等革命性特性,而React 19虽然尚未正式发布,但根据开发路线图,它将进一步优化开发体验和性能表现。 React 18的核心改进包括: 并发渲染(Concurrent Rendering):使应用能够同时准备多个版本的UI 自动批处理(Automatic Batching):优化状态更新,减少不必要的渲染 过渡更新(Transitions):区分紧急和非紧急更新 新的服务端渲染架构:提升首屏加载速度 React 19预期将带来的特性: 更简洁的组件写法 内置的数据获取解决方案 更智能的编译优化 改进的开发者工具

2025-07-31

完结MCP+DeepSeek打造AI Agent智能体

引言:AI Agent的崛起与挑战 近年来,人工智能(AI)技术飞速发展,尤其是大语言模型(LLM)的突破,使得AI Agent(智能体)成为行业焦点。AI Agent不仅能执行特定任务,还能自主决策、与环境交互,甚至具备一定程度的“自我进化”能力。然而,构建高效、可靠的AI Agent仍面临诸多挑战,如知识整合、推理能力、多模态交互等。 在这样的背景下,MCP(Multi-agent Cognitive Planning,多智能体认知规划)与DeepSeek(深度求索)大模型的结合,为AI Agent的研发提供了全新的技术路径。本文将深入探讨MCP+DeepSeek如何协同工作,打造更强大的AI Agent智能体,并分析其应用前景。 第一部分:MCP与DeepSeek的核心技术解析 1.1 MCP(多智能体认知规划) MCP是一种分布式AI架构,通过多个智能体(Agent)协同工作,实现复杂任务的分解与执行。其核心优势在于: 任务分解与协作:MCP能将复杂任务拆解为多个子任务,由不同的智能体并行处理,提高效率。 动态规划与调整:智能体之间可以实时通信,根据环境变化调整策略,增强适应性。 知识共享:不同智能体的经验可以相互学习,形成集体智慧,避免“单点失效”问题。

2025-07-15

[完结附电子书]GO + AI 零基础实战智能运维平台

引言:运维的智能化革命 在数字化转型浪潮中,运维工作正经历着从人工到自动化,再到智能化的深刻变革。传统运维方式在面对大规模分布式系统、微服务架构和云计算环境时已显得力不从心,而人工智能技术的迅猛发展为运维领域带来了全新可能。本文将探讨如何利用GO语言与AI技术,从零开始构建一个智能运维平台,实现运维工作的自动化、智能化升级。 一、智能运维平台的核心架构 1.1 智能运维的三大支柱 一个完整的智能运维平台通常由三大核心组件构成:数据采集层、智能分析层和决策执行层。GO语言凭借其高并发、高性能的特性,在这三个层面都能发挥重要作用。 数据采集层负责从各种系统和应用中收集指标、日志和跟踪数据。GO语言的标准库和丰富的第三方包(如Prometheus客户端库)使其成为构建高效采集系统的理想选择。与Python相比,GO编译后的二进制文件部署简单,资源占用低,特别适合作为数据采集代理部署在大量节点上。 智能分析层是平台的大脑,这里AI算法对采集到的数据进行分析,识别异常、预测趋势并生成洞察。虽然AI模型训练通常使用Python,但GO可以通过CGO调用训练好的模型,或使用ONNX等跨平台推理引擎来执行模型预测。 决策执行层将分析结果转化为具体运维动作,如扩容、重启服务或触发告警。GO强大的并发模型(goroutine和channel)使其能够高效管理大量并发的运维操作。

2025-07-13

AI Agent+MCP从0到1打造商业级编程智能体(19章)

引言 在人工智能(AI)技术飞速发展的今天,AI Agent(人工智能代理)已成为学术界和工业界关注的焦点。AI Agent通过感知环境、自主决策和执行任务,展现出强大的智能化能力。而MCP(Model-Communication-Planning,模型-通信-规划)框架作为一种新兴的智能体架构,为AI Agent的协同与进化提供了新的理论支撑。本文将深入探讨AI Agent的核心概念、MCP框架的运作机制,以及智能体技术在未来社会中的应用前景。 1. AI Agent:智能体的定义与分类 1.1 什么是AI Agent? AI Agent是指能够感知环境、通过计算和推理做出决策,并采取行动以实现特定目标的智能实体。与传统的程序不同,AI Agent具有自主性(Autonomy)、反应性(Reactivity)、目标导向性(Proactiveness)和社会性(Social Ability)等特征。

2025-07-04

完结12章AI辅助神器Cursor -从0到1实战《仿小红书小程序》

引言:AI编程时代的到来 在当今快速发展的技术环境中,人工智能已不再是遥不可及的概念,而是逐渐渗透到我们日常工作的方方面面。作为开发者,我有幸亲身体验了AI辅助编程工具Cursor如何彻底改变传统的开发流程。本文将详细记录我使用Cursor从零开始开发一个仿小红书风格的小程序的全过程,分享AI辅助开发的实际体验、技术挑战与突破,以及这一过程中的深刻见解。 Cursor不同于传统的代码编辑器,它集成了先进的AI模型,能够理解上下文、生成代码、解释复杂逻辑甚至协助调试。这种"结对编程"式的工作方式,大大降低了开发门槛,提高了效率,尤其适合独立开发者和小型团队快速验证想法。在接下来的内容中,我将从环境配置开始,逐步展示如何利用Cursor完成一个完整项目。

2025-07-03

完结15章AI 智能体从入门到高级(COZE版)零基础/零代码课程

引言:AI智能体时代已来 在数字化浪潮席卷全球的今天,人工智能已不再是科幻电影中的遥远概念,而是真切地改变着我们工作与生活的日常工具。特别是AI智能体的出现,让"人人可创造"的智能应用时代真正到来。COZE作为一款革命性的AI智能体开发平台,以其零代码、可视化的特点,彻底打破了技术门槛,让没有任何编程背景的普通用户也能轻松构建属于自己的智能助手。 AI智能体不同于传统的程序,它具有学习能力、决策能力和自然交互能力,能够理解用户意图并自主完成任务。从简单的问答机器人到复杂的业务流程自动化,AI智能体的应用场景几乎无限。而COZE平台将这些强大功能的实现过程简化到了极致,通过拖拽式界面和模块化设计,让创意而非技术成为唯一的限制因素。 本指南将从零开始,带领读者探索COZE平台的奥秘,从基础概念到高级应用,从简单对话机器人到多功能集成智能体,一步步掌握AI智能体开发的核心技能。无论你是完全的技术小白,还是希望拓展技能边界的专业人士,都能在这趟学习旅程中找到属于自己的成长路径

2025-07-02

OpenCV4 CSharp从入门到实战课

一、OpenCV4与C#的完美结合 计算机视觉作为人工智能领域的重要分支,正在深刻改变着我们与数字世界交互的方式。OpenCV(Open Source Computer Vision Library)作为最流行的开源计算机视觉库,自1999年问世以来,已经成为开发者实现图像处理和计算机视觉功能的首选工具。而OpenCV4作为当前的最新主要版本,带来了诸多性能优化和新特性。 对于C#开发者而言,将OpenCV4与C#结合使用是一个极具吸引力的选择。C#凭借其优雅的语法、强大的.NET生态系统和出色的开发效率,在企业应用开发中占据重要地位。通过Emgu CV等封装库,C#开发者可以无缝地调用OpenCV的功能,同时享受C#语言带来的开发便利。 OpenCV4为C#开发者带来的主要优势包括: 跨平台能力:支持Windows、Linux、macOS等多种操作系统 丰富的算法库:包含超过2500种优化算法 多语言接口:除了C++原生接口外,还支持Python、Java和C#等语言绑定 硬件加速:支持CPU指令集优化和GPU加速

2025-07-01

完结20周零基础深入AI/大模型必修数学体系课

零基础程序员数学体系课 引言 在当今数字化浪潮中,人工智能(AI)已成为推动技术进步的核心力量。从智能语音助手到自动驾驶汽车,从医疗诊断到金融预测,AI技术正以前所未有的速度渗透到我们生活的方方面面。然而,许多对AI充满热情的程序员,尤其是零基础的初学者,往往在面对AI背后的数学原理时感到望而生畏。数学作为AI的"语言"和基础工具,其重要性不言而喻。本文旨在为零基础的程序员构建一条通往AI数学的清晰路径,帮助读者克服数学恐惧,建立坚实的数学基础,为深入AI领域做好准备。

2025-06-29

C#+WPF开发全自动温湿度控制系统教程

引言 在现代工业自动化、农业温室、仓储管理以及智能家居等领域,温湿度控制系统扮演着至关重要的角色。随着.NET技术的不断发展,C#与WPF的组合为开发这类系统提供了强大的工具集。本文将探讨如何利用C#和WPF框架开发一个高效、美观且功能完善的温湿度控制系统,涵盖从系统设计到实现的关键环节。 一、系统架构设计 1.1 整体架构 一个典型的温湿度控制系统通常采用三层架构: 表示层:使用WPF实现用户界面,提供数据可视化、参数设置和系统控制功能 业务逻辑层:处理温湿度数据的采集、分析和控制算法 数据访问层:负责与硬件设备通信及数据持久化

2025-06-19

C#+WPF开发WebApi医疗设备联网系统教程

引言 在现代企业应用开发中,前后端分离已成为主流架构模式。C#作为微软生态的核心语言,配合WPF(Windows Presentation Foundation)可以构建功能强大、界面美观的桌面应用程序。而WebApi作为轻量级的HTTP服务框架,为前后端分离提供了理想的后端解决方案。本文将探讨如何利用C#和WPF开发高效、可靠的WebApi客户端应用,分享架构设计思路和最佳实践。 一、WPF与WebApi组合的优势 WPF作为微软推出的桌面应用UI框架,具有数据绑定、样式模板、动画效果等强大功能,能够构建出媲美Web应用的丰富用户界面。而WebApi基于RESTful架构风格,通过HTTP协议提供标准化数据接口,两者结合可发挥各自优势: 前后端解耦:WebApi负责业务逻辑和数据存取,WPF专注于用户交互和数据显示 部署灵活性:后端服务可独立部署和扩展,客户端只需关注接口调用 多客户端支持:同一套WebApi可同时服务于WPF、Web、移动端等多种客户端 开发效率:利用C#语言的全栈优势,前后端可使用相同技术栈,降低学习成本

2025-05-27

完结17章计算机视觉-YOLO+Transfomer多场景目标检测实战课程

摘要 本文深入探讨了计算机视觉领域中目标检测技术的最新进展,重点分析了YOLO系列算法和Transformer架构的融合应用。文章首先介绍了目标检测的基本概念和发展历程,然后详细解析了YOLO算法的原理及其优势,接着探讨了Transformer在计算机视觉中的应用及其与YOLO的结合方式。最后,通过一个实战案例展示了如何将YOLO与Transformer结合进行目标检测,并对未来发展趋势进行了展望。本研究为计算机视觉领域的研究人员和开发者提供了有价值的参考。 引言 计算机视觉作为人工智能的重要分支,近年来取得了突飞猛进的发展。其中,目标检测技术因其广泛的应用场景而备受关注,从自动驾驶到安防监控,从医疗影像分析到工业质检,目标检测都发挥着关键作用。随着深度学习技术的快速发展,目标检测算法也经历了从传统方法到深度学习的革命性转变。 在众多目标检测算法中,YOLO(You Only Look Once)系列以其高效的检测速度和良好的准确率脱颖而出。与此同时,Transformer架构自2017年在自然语言处理领域大放异彩后,也逐渐被引入计算机视觉领域,并展现出强大的潜力。本文将重点探讨如何将YOLO与Transformer相结合,构建更加强大的目标检测模型。

2025-05-21

2025徐老师Vue3全家桶课程+大型项目实战课程

Vue.js作为当下最流行的前端框架之一,其3.0版本的发布带来了诸多革新。Vue3全家桶不仅仅是一个框架,更是一套完整的开发生态系统,为开发者提供了从基础到高级的全方位解决方案。本文将全面介绍Vue3全家桶的核心组成部分、优势特点以及在实际项目中的应用场景,帮助开发者更好地理解和运用这套强大的工具集。 一、Vue3全家桶的核心组成 Vue3全家桶由多个相互配合的库和工具组成,每个部分都有其独特的定位和功能: 1. Vue3核心库 :这是整个生态系统的基础,提供了响应式数据、组件系统、指令等核心功能。Vue3在性能、体积和开发体验上都做了重大改进,如引入了Composition API、更好的TypeScript支持等。 2. Vue Router 4 :专为Vue3设计的官方路由解决方案。它支持动态路由、嵌套路由、路由守卫等功能,是构建单页面应用(SPA)不可或缺的部分。 3. Vuex 4/Pinia :状态管理工具。Vuex是Vue的官方状态管理库,而Pinia则是Vue3推荐的新一代状态管理工具,提供了更简单的API和更好的TypeScript支持。 4. Vite :新一代前端构建工具。由Vue作者尤雨溪开发,Vite利用浏览器原生ES模块导入,实现了闪电般的冷启动和即时热更新,大幅提升了开发体验。 5. Vue CLI :虽然Vite正在成为新宠,但Vue CLI仍然是许多项目的选择,它提供了项目脚手架和丰富的插件系统。 6. Vue DevTools :浏览器开发者工具扩展,专门为Vue应用调试设计,支持组件树查看、状态调试、性能分析等功能。

2025-05-15

istio入门到精通【400节大课】

Istio运维开发:云原生服务网格的实践与挑战 一、Istio概述与核心架构 Istio作为当前最流行的服务网格(Service Mesh)实现之一,已经成为云原生技术栈中不可或缺的组成部分。这个由Google、IBM和Lyft联合开发的开源项目,专门用于解决微服务架构中的通信、安全、监控和流量管理等问题。Istio通过在服务之间插入一个轻量级网络代理(Envoy)来实现这些功能,而无需修改应用程序代码。 Istio的核心架构由数据平面(Data Plane)和控制平面(Control Plane)组成。数据平面由一组智能代理(Envoy)组成,这些代理作为边车(Sidecar)容器部署在每个服务实例旁边,负责处理服务间的所有网络通信。控制平面则负责管理和配置这些代理来路由流量,以及在运行时执行策略。 从运维开发的角度来看,Istio提供了几个关键组件: - Pilot :负责服务发现和智能路由配置分发 - Citadel :处理服务间和终端用户的身份认证与证书管理 - Galley :配置验证、提取和处理 - Mixer :策略控制和遥测数据收集(注:在较新版本中Mixer已被逐步弃用)

2025-05-08

【Winform+WPF】喷涂工艺SCADA采集监控上位机教程

一、上位机开发概述 上位机开发是指为工业控制系统、测试测量设备、自动化装置等硬件设备开发控制与监控软件的过程。这类软件通常运行在PC端,通过与下位机(如PLC、单片机、嵌入式设备等)进行通信,实现对硬件设备的监控、数据采集、参数配置和操作控制。 在上位机开发领域,微软的.NET平台提供了两种主要的UI框架:Windows Forms(简称Winform)和Windows Presentation Foundation(WPF)。这两种技术各有特点,适用于不同的开发场景和需求。 二、Winform技术在上位机开发中的应用 1. Winform技术简介 Windows Forms是.NET Framework最早提供的用户界面框架,自2002年随.NET Framework 1.0发布以来,已成为Windows桌面应用程序开发的主流选择之一。它基于传统的GDI+绘图技术,采用事件驱动的编程模型。 2. Winform在上位机开发中的优势

2025-04-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除