自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(0)
  • 收藏
  • 关注

空空如也

istio入门到精通【400节大课】

Istio运维开发:云原生服务网格的实践与挑战 一、Istio概述与核心架构 Istio作为当前最流行的服务网格(Service Mesh)实现之一,已经成为云原生技术栈中不可或缺的组成部分。这个由Google、IBM和Lyft联合开发的开源项目,专门用于解决微服务架构中的通信、安全、监控和流量管理等问题。Istio通过在服务之间插入一个轻量级网络代理(Envoy)来实现这些功能,而无需修改应用程序代码。 Istio的核心架构由数据平面(Data Plane)和控制平面(Control Plane)组成。数据平面由一组智能代理(Envoy)组成,这些代理作为边车(Sidecar)容器部署在每个服务实例旁边,负责处理服务间的所有网络通信。控制平面则负责管理和配置这些代理来路由流量,以及在运行时执行策略。 从运维开发的角度来看,Istio提供了几个关键组件: - Pilot :负责服务发现和智能路由配置分发 - Citadel :处理服务间和终端用户的身份认证与证书管理 - Galley :配置验证、提取和处理 - Mixer :策略控制和遥测数据收集(注:在较新版本中Mixer已被逐步弃用)

2025-05-08

【Winform+WPF】喷涂工艺SCADA采集监控上位机教程

一、上位机开发概述 上位机开发是指为工业控制系统、测试测量设备、自动化装置等硬件设备开发控制与监控软件的过程。这类软件通常运行在PC端,通过与下位机(如PLC、单片机、嵌入式设备等)进行通信,实现对硬件设备的监控、数据采集、参数配置和操作控制。 在上位机开发领域,微软的.NET平台提供了两种主要的UI框架:Windows Forms(简称Winform)和Windows Presentation Foundation(WPF)。这两种技术各有特点,适用于不同的开发场景和需求。 二、Winform技术在上位机开发中的应用 1. Winform技术简介 Windows Forms是.NET Framework最早提供的用户界面框架,自2002年随.NET Framework 1.0发布以来,已成为Windows桌面应用程序开发的主流选择之一。它基于传统的GDI+绘图技术,采用事件驱动的编程模型。 2. Winform在上位机开发中的优势

2025-04-26

17章计算机视觉-YOLO+Transfomer多场景目标检测实战教程

引言:目标检测技术的演进与融合趋势 目标检测作为计算机视觉领域的核心任务之一,在过去十年间经历了翻天覆地的技术变革。从早期的传统特征提取方法(如HOG+SVM)到基于深度学习的区域提议网络(R-CNN系列),再到单阶段检测器(如YOLO、SSD)的崛起,目标检测技术不断向着更高精度、更快速度的方向发展。2020年以来,Transformer架构从自然语言处理领域跨界到计算机视觉,Vision Transformer(ViT)的出现彻底改变了人们对图像处理的认知方式。 在这样的技术背景下,将YOLO(You Only Look Once)这一经典的实时目标检测框架与Transformer这一革命性的注意力机制相结合,成为了当前计算机视觉研究的热点方向之一。YOLO以其卓越的实时性能著称,而Transformer则凭借其强大的全局建模能力在精度上屡创新高。二者的结合有望在保持实时性的同时显著提升检测精度,为实际应用场景带来质的飞跃。 本文将深入探讨YOLO+Transformer融合架构的技术原理,通过代码级别的实战演示展示如何实现这一先进目标检测系统,并分析其在不同场景下的性能表现与应用价值。我们将从理论基础到实践细节,为读者呈现这一技术融合的完整图景。

2025-04-22

20章完结Java高手提薪精选-Spring源码解析到手写核心组件

一、引言:Spring框架的架构哲学 Spring框架作为Java企业级开发的事实标准,其成功不仅源于其丰富的功能特性,更在于其精妙的核心设计。Spring源码的核心组件构成了整个框架的骨架,理解这些组件的设计原理和工作机制,对于深入掌握Spring框架至关重要。Spring的设计哲学可以概括为三点:轻量级、非侵入性和模块化。这些理念贯穿于Spring的各个核心组件之中,使得框架既保持了高度的灵活性,又能提供强大的企业级功能支持。 Spring框架的核心组件并非孤立存在,而是通过精心设计的接口和抽象层相互协作,形成一个有机整体。这些组件包括IoC容器、Bean生命周期管理器、资源加载系统、AOP框架、事务管理模块等,它们共同支撑起了Spring的整个生态系统。通过对这些核心组件的剖析,我们不仅能够更好地使用Spring框架,还能从中学习到优秀软件架构的设计思想。

2025-04-17

20周程序员数学体系课

一、程序员在不同的职业阶段和工作领域中,对数学的需求程度会有所不同。以下是一些普遍认为对程序员较为重要的数学知识点: 基本数学概念: 数学符号:加减乘除、等于、不等于等基本运算符。 代数:变量、方程求解、函数表达与分析。 几何:坐标系、向量、点、直线、平面的基本性质,用于理解图形界面和空间逻辑。 离散数学: 布尔代数与逻辑:这是计算机科学的基础,用于程序逻辑设计。 图论:研究点与边的关系,对网络编程、数据库设计、路径寻找等问题至关重要。 集合论:理解和操作数据结构的基础。 排列组合与概率:在算法设计、数据分析、密码学等方面有用。 递归与分治策略:解决问题的常见方法,尤其是在算法设计中。 统计学与概率论: 在数据分析、机器学习、A/B测试、推荐系统等领域,概率分布、假设检验、贝叶斯定理等是关键概念。 有助于理解数据的不确定性,做出基于数据的决策。 线性代数:

2025-04-15

[14章完结版]RAG全栈技术从基础到精通 ,打造高精准AI应用

一、7 种 RAG 模式 Naive RAG 是最基础的架构,包含简单的文档检索、处理和生成响应的流程 Retrieve-and-rerank 在基础 RAG 上增加了重排序步骤,可以优化检索结果的相关性 Multimodal RAG 能够处理图像等多种类型的数据,不仅限于文本 Graph RAG 利用图数据库增强知识连接,可以更好地理解文档间的关系 Hybrid RAG 结合了多种技术的优势,包含图结构和传统检索方法 Agentic RAG Router 使用 AI Agent 来路由和处理查询,可以选择最适合的处理路径 Agentic RAG Multi-Agent 使用多个专门的 AI Agent 协同工作,可以调用不同的工具(如向量搜索、网页搜索、Slack、Gmail 等) 二、认识 RAG RAG 的核心思想是将信息检索与生成模型相结合。在传统的 LLM 应用中,模型仅依赖训练时学到的知识来回答问题,这导致了知识更新困难、回答可能过时或不准确等问题。而 RAG 系统通过在生成回答前主动检索相关信息,将实时、准确的知识作为上下文提供给模型,从而显著提升了回答的质量和可靠性。

2025-04-14

[14章附电子书]Vue3.5+Electron+大模型 跨平台AI桌面聊天应用实战

前言: Electron是一个基于Chromium和Node.js,可以使用HTML、CSS和JavaScript构建跨平台应用的技术框架,兼容Mac、Windows和 Linux。虽然B/S是目前开发的主流,但是C/S仍然有很大的市场需求。受限于浏览器的沙盒限制,网页应用无法满足某些场景下的使用需求,而桌面应用可以方便地读写本地文件、发起跨域请求、调用更多系统资源,再加上Web开发低成本、高效率的优势,这种方式越来越受到开发者的喜爱。 综合考虑多方面因素,最终选择electron-vite作为本教程的主角。electron-vite现已推出1.x正式版,虽然没有被Electron和Vite官方提到,但经过实战,体验还是不错的。在省去了手动融合Electron和Vite繁琐过程的同时,还实现了V8字节码、主进程和预加载脚本热更新等非常实用的功能,要比自己从头搭建容易得多。 一、electron的进程 electron有个很重要的概念就是进程和进程间通信,科学详细的描述请查阅官网,这里说下简单的理解: electron分为主进程和渲染进程,主进程负责和系统级数据交互,所以需要借助nodejs或者jdk等环境,渲染进程主要负责渲染页面展示,所以需要借助浏览器环境。

2025-04-11

C#+WPF+Opencv模块化开发视觉对位运动控制系统教程

一、WPF 在工控领域的优势 WPF(Windows Presentation Foundation)因其强大的功能和灵活性,已成为工控上位机开发的首选技术之一。 WPF 提供了丰富的控件、图形和动画效果,以及与硬件设备的交互能力,非常适合用来构建复杂的工业自动化和监控系统。 几个关键因素,解释为什么 WPF 能在工控上位机开发中占据重要地位,并提供一些示例代码来说明其应用。 1、强大的图形界面支持 WPF 提供了丰富的图形绘制功能,支持矢量图形、动画、3D图形等,非常适合用于开发可视化程度高的工控界面。 另外,XAML(可扩展应用程序标记语言)使得界面设计与逻辑代码分离,有助于提高开发效率。 2、跨平台兼容性 虽然 WPF 最初是为 Windows 平台设计的,但随着 .NET Core 和 .NET 5+ 的推出,现在可以利用这些框架来创建跨平台的应用程序,这意味着一套代码可以在不同操作系统上运行,这对于工控系统的部署而言是一个巨大的优势。 3、丰富的三方库支持 C# 拥有庞大的生态系统,提供了大量的第三方库和工具。 支持多种工业通信协议,如 Modbus、EtherCAT、OPC-UA 等。 可以轻松实现与 PLC、传感器等硬件设备的通信,可以缩短开发周期

2025-04-07

2025新品java-antd-web3全栈dapp开发课程

一、学习 DApp 开发有什么作用? 随着区块链技术的迅猛发展,DApp将是Web3的核心应用形式。对于开发者来说,学习DApp开发不仅是一项技能的提升,更是拥抱未来数字经济的一种方式。那么,学习DApp开发究竟能带来哪些作用和价值? 1、引领未来趋势DApp是区块链生态的核心组成部分,涵盖金融、游戏、社交、供应链等多个领域。随着越来越多的企业和开发者投身Web3,DApp的应用范围持续扩展。掌握DApp开发技能,让你能够在这个新兴领域中抢占先机,为个人职业发展铺平道路。 2、海量就业机会区块链行业对DApp开发者的需求正在不断攀升。无论是创业公司还是行业巨头,都需要具备DApp开发能力的技术人才。相关职位薪资高、成长空间大,学习DApp开发可以让你在就业市场中占据有利位置。 二、DAPP与传统APP的区别 与传统中心化应用相比,DAPP具有几个显著差异: 信任机制:传统APP依赖中心化机构的信任,而DAPP通过代码和数学算法建立信任 数据控制:传统APP数据由运营方控制,DAPP数据由网络参与者共同维护 抗审查性:DAPP一旦部署,很难被单一实体关闭或审查 透明度:DAPP的代码和交易记录通常对所有人可见

2025-04-02

多智能体开发框架之LangGraph全面剖析实战教程

LangGraph是一个专注于构建有状态、多角色应用程序的库,它利用大型语言模型(LLMs)来创建智能体和多智能体工作流。这个框架的核心优势体现在以下几个方面: 周期性支持:LangGraph允许开发者定义包含循环的流程,这对于大多数中智能体架构来说至关重要。这种能力使得LangGraph与基于有向无环图(DAG)的解决方案区分开来,因为它能够处理需要重复步骤或反馈循环的复杂任务。 高度可控性:LangGraph提供了对应用程序流程和状态的精细控制。这种精细控制对于创建行为可靠、符合预期的智能体至关重要,特别是在处理复杂或敏感的应用场景时。 持久性功能:LangGraph内置了持久性功能,这意味着智能体能够跨交互保持上下文和记忆。这对于实现长期任务的一致性和连续性非常关键。持久性还支持高级的人机交互,允许人类输入无缝集成到工作流程中,并使智能体能够通过记忆功能学习和适应。 在多智能体开发中,LangGraph是一个相对较少被提及的概念,因为它不是一个广为人知的框架。然而,我们可以讨论一些与多智能体系统开发相关的框架和工具,这些框架和工具可以帮助开发者构建复杂的智能体系统。

2025-03-28

11章全SpringBoot 3.x + Netty + MQTT 实战物联网智能充电桩

一、什么是物联网(IoT)? 物联网(Internet of Things,简称 IoT)是指通过互联网连接和通信的物理设备和对象的网络。它是一个由传感器、软件和通信设备组成的系统,可以使各种设备和物品相互连接,并通过数据交换和分析来提供更智能、高效和自动化的功能。 物联网的主要目标是将真实世界的物体与互联网相连,使其具备感知、交互和通信的能力。通过物联网,可以实现智能家居、智慧城市、工业自动化、农业监测、智能交通等应用。 二、为什么需要物联网? 物联网的出现主要是为了解决日常生活和工作中的一些实际问题。例如,在智能家居中,可以通过物联网连接家中的各种设备,如智能灯泡、智能插座、智能门锁等,从而实现远程控制、自动化调节和能源管理,提高家居的舒适度和能源利用效率。 此外,物联网在工业领域也发挥着重要作用。传统的工业生产过程通常需要大量的人力和物力投入,而物联网可以通过连接和监控各种设备和环境参数,实现生产过程的自动化和优化,提高生产效率和产品质量。例如在石油行业,可以利用物联网技术来监测阀门的状态和运行情况。通过安装传感器和执行器在阀门上,可以实时监测阀门的开启、关闭状态、温度、压

2025-03-26

完结20周LLM应用开发平台特训营体系课

一、什么是AI? 人工智能(AI,Artificial Intelligence)是指让机器具备人类智能的能力,使其能够执行如感知、推理、决策、学习和创造等任务。AI 的发展经历了多个阶段,从最早的基于规则的专家系统,到如今的深度学习和神经网络驱动的智能系统,使得 AI 具备了更强的学习能力和泛化能力。 AI 主要包括以下几个关键领域: 计算机视觉(CV):如人脸识别、图像分类、目标检测等。 自然语言处理(NLP):如机器翻译、文本摘要、语音识别等。 机器人技术:如自动驾驶、机械臂、智能家居等。 决策系统:如推荐系统、智能调度、金融风控等。 其中,自然语言处理(NLP) 是 AI 领域的一个重要分支,而 LLM(大语言模型)正是 NLP 领域的一项突破性技术。 二、AI与LLM 的关系 LLM(Large Language Model,大语言模型)属于 AI 领域的一个重要子集,它是 AI 发展的高级阶段,专门用于处理和生成自然语言。AI 主要提供了 LLM 发展的基础技术,而 LLM 是 AI 在自然语言处理上的具体应用。

2025-03-25

已完结体系课-LLM算法工程师全能实战训练营

一、什么是LLM? LLM是一种使用深度学习算法来处理语言数据的模型。与传统的基于规则的语言处理系统不同,LLM依赖于大量的语料数据来学习语言的规律和结构。其训练过程主要是通过大量的文本数据,使用大规模的神经网络模型,来捕捉语言中的语法、语义、上下文关系等信息。 二、LLM的特点 规模庞大:LLM通常由数亿、数十亿甚至数千亿个参数构成,这使它们能从海量的文本数据中学习到丰富的语言特征。多任务能力:LLM不仅能够完成文本生成任务,还能进行问答、翻译、摘要生成等多种任务。上下文建模:LLM擅长理解长文本中的上下文关系,可以考虑到更长的依赖关系,而不像传统语言模型只能处理短范围的上下文。 三、LLaMA —— Meta 大语言模型 LLaMA 语言模型全称为 “Large Language Model Meta AI”,是 Meta 的全新大型语言模型(LLM),这是一个模型系列,根据参数规模进行了划分(分为 70 亿、130 亿、330 亿和 650 亿参数不等)。

2025-03-12

完结28章Go开发疑难杂症终结者通关指南

Go高手必修课--直击Go开发中各类疑难问题解决,今天给大家总结一下关于Go语言项目开发的常见问题与解决方法。 Go语言作为一种高性能、简洁易用的编程语言,越来越多的开发者开始选择它作为项目开发的首选语言。然而,在实际的项目开发过程中,我们也会遇到一些常见的问题。本文将介绍一些这样的问题,并提供相应的解决方法,帮助开发者更好地应对这些挑战。 问题一:依赖管理 在Go语言的项目开发中,依赖管理是一个常见的问题。由于Go语言的模块化特性,项目往往会依赖于许多第三方包和库。而如何有效地管理这些依赖,保证项目的稳定性和可维护性,是一个需要仔细考虑的问题。 解决方法: 使用Go Modules:Go Modules是Go语言官方推荐的依赖管理工具。通过使用Go Modules,可以轻松地管理项目的依赖关系,并保证依赖的版本一致性。 使用版本控制工具:对于一些没有集成Go Modules的项目,可以使用版本控制工具(例如Git)来管理依赖。通过在项目中添加vendor目录,并将依赖的包放入其中,可以有效地管理项目的依赖关系。 使用版本锁定:为了避免依赖的包在更新版本后引发兼容性问题,可以使用

2024-12-10

C++ Qt6 QML入门进阶与项目实战视频教程

一、QML和Qt Quick快速入门 QML是用户界面标记语言。它是一种声明性语言,是Qt框架的一部分。它支持构建流畅的、触摸友好的用户界面。随着触摸屏移动设备的流行,Qt Quick被创建为高度动态的。开发者可以使用最少的代码轻松高效的构建UI。Qt QML模块实现了QML架构,并为开发应用程序提供了对应框架。它定义并实现了语言和基础设施,并提供了应用程序编程接口(API)来集成QML语言、JS和c++。 Qt Quick为QML提供了类型和功能库。它包括交互类型、视觉类型、动画、模型、视图和图形效果。它用于触摸输入、流畅动画和用户体验至关重要的移动应用。Qt QML模块为QML应用程序提供语言和基础设施,而Qt Quick模块提供许多视觉元素、动画和更多模块来开发面向触摸和视觉上吸引人的应用程序。您可以使用QML和Qt Quick控件,而不是使用Qt小部件进行UI设计。Qt Quick支持多种平台,比如Windows、Linux、Mac、iOS和Android。您可以在C++中创建一个自定义类,并将其移植到Qt Quick来扩展其功能。此外,该语言提供了与C++和JS的平滑集成。

2024-12-09

和橘子学AI绘图【440集100实战】

前言: 随着2022年末ChatGPT的走红,AI的潜力逐渐被大众所认可。其中,AI绘画作为新兴技术也随之崭露头角,成为人们不可或缺的好帮手。 AI绘画的基本原理就是让AI为设计师提供设计支持,从而帮助用户完成图形设计。因此,即使你没有设计和绘图的技能,也能轻松实现自己的需求,只需简单地向AI传达信息。目前很多AI绘画的小程序如Midjourney、Stable Diffusion等,都在国内外广受欢迎。 这些小程序不仅能够辅助包装设计、周边产品的研发,还能为数字人在短视频和直播画面中的应用提供支持。此外,越来越多的企业在招募AI绘图师,这也为新兴行业提供了新的机遇。 可以说,AI绘画技术的出现,将会对传统的设计业产生颠覆性的影响,提高了工作和生产效率,替代了基础设计的工作,同时带来了新的行业和职位,让每个人都能快捷高效地完成自己的设计需求。

2024-12-04

完结17章AI助手Copilot辅助Go+Flutter打造全栈式在线教育系统

前言: 随着计算机技术和多媒体技术的不断发展与成熟,越来越多的学习者选择网络平台这一既先进又普遍的学习方式。互联网具有双向交换这一特点,信息交互非常便利,因此使用网络平台这种学习方式和线下实际学习上课相比有着独特的优势,更适合学习者进行更方便的自主学习。在线教育学习系统开发目的是使学校的教学模式模式从线下时时教学方式转变成线上随时管理,为教师和学生提供方便条件。在经过学校提供的数据进行实际调研分析后,了解学校各方面需求情况,对学校已有的教育教学管理模式进行修改完善,在这个基础上修改出—套符合学校需求的网课系统,借此机会熟悉系统开发的流程。随着后期工作对信息管理系统的功能进行不断调整和完善,学校方面的信息管理将越来越依赖于通过系统来处理。所以系统开发也要根据学校教学工作的实际情况来进行调整,使其更加符合学校教师及学生的需求。 一、需求分析 1.1目标用户群体 这些用户可能是学生、家长、教师或教育机构。不同的用户群体有不同的需求。例如,学生可能需要多样化的课程内容和互动学习工具,而教师则需要便捷的教学管理和学生评估系统。 1.2功能需求 明确核心功能需求是开发在线教育系统的关键。以下

2024-12-03

完结13章Electron+Vue3+AI+云存储-实战跨平台桌面应用

一、Electron是什么? Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 嵌入 Chromium 和 Node.js 到 二进制的 Electron 允许您保持一个 JavaScript 代码代码库并创建 在Windows上运行的跨平台应用 macOS和Linux——不需要本地开发 经验。 二、Electron Fiddle 运行实例 Electron Fiddle 是由 Electron 开发并由其维护者支持的沙盒程序。 我们强烈建议将其作为一个学习工具来安装,以便在开发过程中对Electron的api进行实验或对特性进行原型化。

2024-12-02

[完结14章附电子书]Springboot+ChatGLM 实战AI数字人面试官系统

一、ChatGLM定义 ChatGLM是由清华技术成果转化的公司智谱AI发布的开源的、支持中英双语问答的对话语言模型系列,并针对中文进行了优化,该模型基于General Language Model(GLM)架构构建,ChatGLM是一款基于人工智能技术的智能聊天机器人,它具备强大的自然语言处理能力,能够理解和回答我们的问题,通过与ChatGLM的对话,我们可以轻松获取各种信息,解决生活中的疑惑,甚至寻求专业建议,ChatGLM的出现,让我们在获取信息、解决问题上更加高效便捷。 二、发展历程 早期对话系统:最初的对话系统基于规则和模板,能够回答特定的问题或执行简单的任务。 统计模型:随后,统计机器学习方法被用于对话系统,使得模型能够处理更多样化的输入。 神经网络:深度学习的兴起带来了基于神经网络的对话系统,这些系统能够生成更自然的回答。 预训练语言模型:BERT、GPT等预训练语言模型的出现极大地提升了对话系统的性能。 专门化的聊天模型:随着技术的进步,出现了专门为聊天设计的模型,如Meena、DialoGPT、ChatGLM等。

2024-11-27

17章AI助手Copilot辅助Go+Flutter打造全栈式在线教育系统

一、什么是Copilot 很多人都在使用Copilot,但是大多数人并不知道它的中文是什么意思,而这也是我在使用1年后才偶然看到的,Copilot中文意思是副驾驶。AI出来后大家一直在讨论AI会不会淘汰程序员,从Copilot的中文名可以看出不会,它的定位是一个副驾驶,偏辅助类的一个工具。 所以Copilot是一个辅助编程的效率工具。研究发现 GitHub Copilot 帮助开发者更快地编码,专注于解决更大的问题,更长时间地保持在流畅状态,并对他们的工作感到更有成就感。 74% 的开发者能够专注于更令人满意的工作 88% 的人感觉更有效率 96% 的开发者在重复任务上更快 二、主要区别 范围:Agent可以执行各种任务,但并非所有任务都涉及对话。对话式 AI 专注于管理和参与自然语言对话,而 Copilot 则是协助用户在软件应用程序中完成特定任务的专用工具。 功能:Agent旨在完成任务,其中可能包括自动化、决策或使用工具。对话式人工智能专门用于通过对话与用户互动,而 Copilot 则用于提供实时、情境感知的帮助或建议,通常在编码或写作环境中。 用例:Agent可用于各种应

2024-11-26

uniapp+vue3+云开发全栈开发同城配送鲜花小程序任意商城

今天开始使用 vue3 + uni-app 搭建一个电商购物的小程序,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GitHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关注本专栏,学习更多前端uni-app知识。然后开篇先简单介绍一下本项目用到的技术栈都有哪几个方面(阅读此次项目实践文章能够学习到的技术): uni-app:跨平台的应用开发框架,基于vue.js可以一套代码同时构建运行在多个平台。 pnpm:高性能、轻量级npm替代品,帮助开发人员更加高效地处理应用程序的依赖关系。 vue3:vue.js最新版本的用于构建用户界面的渐进式JavaScript框架。 typescript:JavaScript的超集,提供了静态类型检查,使得代码更加健壮。 pinia:vue3构建的Vuex替代品,具有响应式能力,提供非常简单的 API,进行状态管理。 uni-ui:基于vue.js和uni-app的前端UI组件库,开发人员可以快速地构建跨平台应用程序。

2024-11-25

完结28章数据分析50+高频场景实战 业绩提升立竿见影

前言: 本文章从 MySQL 查询、Quick BI 报表、Python 数据分析、业务思维、分析模型这五个数据分析师核心技能出发,全程使用提问式的教学形式(基于职场二人,师傅带徒弟),对数据分析中的50+高频率工作场景实战任务,进行生动有趣的讲解,每个任务按照“任务背景、真实任务内容、完成任务”的线索搭建结构完整数据分析技能体系。帮助学员从零开始无痛入门数据分析,并最后成为公司不可或缺的数据分析高值价人才。 一、MySQL的三种查询方法 1、投影查询 * : 代表所有字段(列) 查询所有, 这个所有分成两个部分 (1)所有的行数据 (2)所有的列数据 select * from student; 这种情况会造成一种后果: 当我们数据量比较大,且数据表的字段比较多的时候, 效率很低; 真实情况,可能我们不需要这么多数据,比如: 只需要学生的 姓名和性别; 查询出来的这些数据是存放在什么地方的? =>内存 =>查询所有的字段是比较消耗内存;

2024-11-15

PyQT6 GUI编程开发桌面软件(2024新版)

PyQt6是一个创建图形用户界面应用程序的工具包,它是Qt6的Python绑定。Qt是一个跨平台的C++图形用户界面应用程序开发框架,广泛用于开发GUI程序,也可用于开发非GUI程序,比如控制台工具和服务器。PyQt6使得Python程序员能够利用Qt的强大功能,轻松创建具有丰富功能和美观界面的应用程序。 PyQt6的主要特点包括: 跨平台:可以在Windows、Linux、macOS等操作系统上运行。 丰富的控件:提供了大量的控件(如按钮、标签、文本框等),方便开发者使用。 强大的布局管理:提供了多种布局管理器,可以方便地对控件进行布局。 事件处理:支持各种事件处理,如鼠标点击、键盘输入等。 丰富的API:提供了大量的API,可以方便地进行各种开发操作。 与Qt6的紧密集成:作为Qt6的Python绑定,PyQt6可以访问Qt6的所有功能。 使用PyQt6开发应用程序的一般步骤: 安装PyQt6:可以通过pip安装PyQt6。 导入必要的模块:从PyQt6.QtWidgets模块中导入应用程序、窗口等类。 创建应用程序和窗口:创建一个QApplication对象和一个窗口对象。

2024-11-08

和橘子学AI视频新课上线

一、什么是数字人? 随着人工智能技术的飞速发展,AI数字人作为其前沿应用之一,正逐渐走进公众视野。AI数字人不仅仅是虚拟形象的简单呈现,它们能够模拟人类的语言、表情和行为,甚至在某些领域展现出超越人类的能力。 二、数字人相关的技术? AI数字人的核心是人工智能技术,包括但不限于机器学习、自然语言处理、计算机视觉和语音合成。以下是构建AI数字人的关键技术要素: - 自然语言处理(NLP):使AI能够理解和生成自然语言,实现与人类的流畅对话。 - 机器学习:通过大量数据训练模型,使AI能够不断学习和适应新情况。 - 计算机视觉:让AI能够识别和理解图像内容,实现面部表情和肢体语言的模拟。 - 语音合成:将文本转换为语音,使AI数字人能够发声并与人类交流。 - 深度学习:通过构建复杂的神经网络模型,提高AI在图像和语音识别上的准确性。 三、数字人产业链 当前虚拟数字人理论和技术日益成熟,应用范围不断扩大,产业正在逐步形成、不断丰富,目前已经发展出了由技术层、平台层、应用层组成的产业链结构。

2024-11-05

和橘子学AI绘图【Midjourney】

继ChatGPT之后,AI绘图网站Midjourney也已经火出圈了。鉴于其强大的绘图能力和极低的使用门槛,Midjourney已经在事实上被各行各业的人作为辅助工具了,更重要的是,它绝对是一个非常理想的学习AI技术的引路人。 AI绘画主要分为两个部分,一个是对图像的分析与判断,即“学习”,一个是对图像的处理和还原,即“输出”。人工智能通过对数以万计的图像及绘画作品进行不断学习,如今已经达到只需输入清晰且易懂的文字tag,即可在很短的时间内得到一张效果不错的画面。对使用者没有任何绘画功底需求,甚至还能根据要求对画面风格进行精细的改变调整。

2024-11-04

AI大模型RAG项目实战课

一、什么是RAG RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索技术与语言生成模型的人工智能技术。该技术通过从外部知识库中检索相关信息,并将其作为提示(Prompt)输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力,如问答、文本摘要、内容生成等。RAG模型由Facebook AI Research(FAIR)团队于2020年首次提出,并迅速成为大模型应用中的热门方案。 二、如何构建RAG? 以下是构建RAG系统的一般步骤: 选择或训练语言模型:选择一个适合任务需求的预训练语言模型。 构建知识库:根据需要处理的信息类型构建相应的知识库,并将知识库中的信息转换为适合快速检索的格式(如向量)。 设计检索机制:实现一个检索组件,能够根据语言模型的输入查询知识库,并返回最相关的信息。 整合与训练:将检索组件和语言模型整合,进行端到端的训练或微调,以优化整个系统的性能。 在实际操作中,可以使用如CLIP(Contrastive Language-Image Pre-training)等多模态模型来增强RAG系统处理多种

2024-10-30

Llama3大模型原理代码精讲与部署微调评估实战

一、Llama3大模型是什么? Llama 是由 Meta的人工智能研究团队开发并开源的大型语言模型(LLM),继Llama 2+模型之后,Meta 进一步推出了性能更卓越的 Meta Llama 3系列语言模型,包括一个80亿参数模型和一个700亿参数模型。Llama370B 的性能美 Gemini1.5 Pro,全面超越 Claude 大杯,而 400B+ 的模型则有望与 Claude 超大杯和新版 GPT-4 Turbo 掰手腕 二、llama2和llama3有什么区别? llama3与llama2的模型架构完全相同,只是model的一些配置(主要是维度)有些不同,llama2推理的工程基本可以无缝支持llama3。在meta官方的代码库,模型计算部分的代码是一模一样的,也就是主干decoder only,用到了RoPE、SwiGLU、GQA等具体技术。 通过对比huggingface模型中的config.json,首先可以看出,模型都是 LlamaForCausalLM 这个类,模型结构不变。

2024-10-21

Flink1.19源码剖析课程-Flink源码教程

一、Flink源码分析——用户状态数据的源码实现 状态数据是flink中非常重要的一部分,在flink实时计算中,涉及到聚合操作的计算,不管是窗口计算还是非窗口计算,都离不开状态数据,在窗口计算中,状态数据由flink自己进行维护,用户不需关心。但是还有一些算子,用户可以自己操作状态数据,比如在map算子中定义状态数据,可能是ValueState或者ListState。本文就来分析一下这些状态数据到底是如何实现和管理的。 首先,flink的状态数据分为两种,一种是KeyedState,这是针对kv键值对的状态数据,每个key都有自己的状态值,一般用在keyBy算子之后。另一种是OperatorState,跟key无关,每个operator的实例只有一个state。 二、Flink源码解析——时间、水印及窗口原理解析 1、时间类型解析 1-1、处理时间(Processing Time):处理时间是指数据被计算引擎处理的时间,以各个计算节点的本地时间为准。

2024-10-18

前端工程化实践视频教程

一、前端工程化实现的技术栈有很多,我们采用ES6+nodejs+npm+Vite+Vue3+router+pinia+axios+Element-plus组合来实现 ECMAScript6:Vue3中大量使用ES6语法 Node.js:前端项目运行环境 npm:依赖下载工具 Vite:前端项目构建工具 Vue3:优秀的渐进式前端框架 router:通过路由实现页面切换 pinia:通过状态管理实现组件数据传递 axios:ajax异步请求封装技术实现前后端数据交互 Element-plus:可以提供丰富的快速构建网页的组件仓库

2024-10-17

ton区块链func语言web3智能合约入门教程

一:什么是TON 先让我们简单的来了解下TON链 "Ton ecosystem" 指的是 "The Open Network" (TON) 的生态系统,这是一个去中心化的区块链平台,最初由 Telegram Group Inc. 开发,但后来由于与美国证券交易委员会(SEC)的法律纠纷,Telegram 宣布终止其直接参与,并将该项目交给了独立的开发者社区。 TON 生态系统旨在提供一个高度可扩展且安全的区块链基础设施,支持多种去中心化应用(dApps)、智能合约以及加密货币交易。该生态系统包括以下关键组件: TON Blockchain - 一个高速、安全且可扩展的区块链网络,用于处理交易和运行智能合约。 TON OS - 一种操作系统,用于管理 TON 区块链上的节点和应用程序。 TON Crystal - TON 的原生加密货币,也被称为 Gram,用于支付网络费用、抵押和激励节点运营者。 TON Services - 提供一系列去中心化的服务,如去中心化存储、域名服务(TON DNS)、匿名浏览和更多。 Developer Tools - 一套工具和资源,帮助开发者构建和部署

2024-10-16

C#多线程与线程同步机制高级实战课程

1.进程和线程是啥? 进程:进程就是一个应用程序,对电脑的各种资源的占用 线程:线程是程序执行的最小单位,任何操作都是线程完成的,线程依托进程存在的,一个进程可以有多个线程 2.多线程 为啥会出现多此线程? 计算机的角度,因为CPU太快了,其他硬件跟不上CPU的速度。CPU可以分为时间片,大概就是时间分片---上下文切换(加载环境--计算--保存环境)。 从微观角度上说,一个核一个时刻,只能执行一个线程;宏观上来说是多线程并发。 另外CPU多核,可以独立工作。例如计算机是4核8线程中,核指的就是物理的核,线程指的是物理的核。

2024-10-15

Vulkan原理与实战

一、Vulkan简介 Vulkan是一个低开销、跨平台的二维、三维图形与计算的应用程序接口(API),最早由科纳斯组织在2015年游戏开发者大会(GDC)上发表。与OpenGL类似,Vulkan针对全平台即时3D图形程序(如电子游戏和交互媒体)而设计,并提供高性能与更均衡的CPU与GPU占用,这也是Direct3D 12和AMD的Mantle的目标。与Direct3D(12版之前)和OpenGL的其他主要区别是,Vulkan是一个底层API,而且能执行并行任务。除此之外,Vulkan还能更好地分配多个CPU核心的使用。 相比于传统的OpenGL,Vulkan API的设计更加贴近硬件。传统API比如OpenGL内部维护一个单一全局的状态机,这就意味着需要通过一个主线程来处理所有的绘图命令,即便驱动内部能够保证渲染足够高校,但是由于外部提交指令的方式是单线程的容易导致多核CPU的利用率不高。而Vulkan从设计上就考虑了多线程编程,允许开发者在多个线程中并行执行绘图命令和资源管理操作。这样可以大幅提升渲染性能,并使应用程序更具响应性。

2024-10-14

完结8章专为立志成为 10倍+ 效能职场跃迁的程序员设计

10倍+ 程序员是每个优秀开发者的追求,但提升10倍+工作效能,可能花费好几年时间和精力都未必达到。本文章带你使用最新AI工具赋能程序员工作各个环节,体验以 10 倍速完成编写代码、发邮件、写周报(日报)、博客、开会、演讲、面试、副业变现等日常工作,全面碾压传统手写方式,助你在几天时间内成为10+效能职场跃迁达人。同时我们共建AI互动圈子,方便你高效获得AI最新动向,快人一步享受AI带来的便利! 一、程序员的AIGC扫盲 AIGC是英文AI-generated content的缩写,也就是人工智能生成内容。简单地说,就是通过一些提示词来生成文字内容、图片、视频、动画,甚至是生成代码。 AIGC的原理 AIGC的原理其实很简单,人工智能发展到现在,已经出现了“涌现”能力,AIGC就是利用人工智能的“涌现”能力,通过一些简单的“提示词”来实现让人工智能去想象、推理、分析,最终,“涌现”内容。

2024-10-09

完结16章程序员软技能:代码之外的生存指南

前言: 本文章穿插大量方法论+工作实例,融合5大方面(工作日常、项目管理、自我增进、领导力、沟通能力、团队合作), 14个高频工作场景下的软技能,其中融入大量作者个人经验总结,解决你99%的职场非coding难题,助力你打开软件开发职业生涯跃迁之门。 一、项目管理 项目管理是管理学的一个分支学科,对项目管理的定义是:指在项目活动中运用专门的知识、技能、工具和方法,使项目能够在有限资源限定条件下,实现或超过设定的需求和期望的过程。项目管理是对一些成功地达成一系列目标相关的活动(譬如任务)的整体监测和管控。这包括策划、进度计划和维护组成项目的活动的进展。 二、项目规模与多样性带来的管理难度 在当今的商业环境中,项目的规模和类型千差万别。大型项目往往涉及众多的参与方、复杂的流程和庞大的资源需求。例如,一个大型基础设施建设项目,可能需要协调多个设计团队、施工队伍、供应商以及政府部门。项目经理不仅要确保各个环节的顺利进行,还要处理好不同利益相关者之间的关系。

2024-09-27

完结9章MySQL必会核心问题50讲

一、数据库可以存储数据、优化读写,关系型数据库由大量表格组成,表与表之间有关联;Mysql、SqlServer、Oracle等都属于关系型数据库管理系统。作为自学选手在安装MySQL过程中遇到了好多乱七八糟的问题,在经历了各种平台搜索乃至付费咨询之后终于摸索出一套完整的安装方法,献给入门小白。 二、MySQL针对不同的用户提供了2中不同的版本: MySQL Community Server:社区版。由MySQL开源社区开发者和爱好者提供技术支持,对开发者开放源代码并提供免费下载。 MySQL Enterprise Server:企业版。包括最全面的高级功能和管理工具,不过对用户收费。 三、为什么要使用数据库 1. 以前存储数据的方式 首先,我先说一说没有用数据库存储的缺陷过程吧! 就像我们以前:我们存储数据的方式,依次为:采用数组在内存中存储数据 -> 集合在内存中存储数据 -> 文件进行存储数据 如果我们采用数组或集合在内存中存储数据的话,我们就不能将数据进行持久化存储,只能当做临时数据使用。如果我们采用文件存储数据的话,我们就无法对数据进行检索和管理等,因此,我们就需要借助数据

2024-09-25

和橘子学AI绘图【400集100实战】

随着人工智能的不断发展,AI 绘画技术也逐渐得到了广泛的应用和推广,很多人不知道如何进行AI绘画,其实非常AI绘画是非常简单的。 今天就给大家分享一些AI绘画相关的功能,包括AI绘画tag生成器和简单好用的AI绘画工具,两者组合使用就能生成一些精致的图片,对于AI绘画小白也非常友好! 一、AI绘画的历史 AI绘画的出现时间可能比很多人想象的要早. 计算机是上世纪60年代出现的, 而就在70年代, 一位艺术家,哈罗德·科恩Harold Cohen(画家,加利福尼亚大学圣地亚哥分校的教授) 就开始打造电脑程序"AARON"进行绘画创作. 只是和当下AI绘画输出数字作品有所不同, AARON是真的去控制一个机械臂来作画的. Harold 对 AARON的改进一直持续了几十年, 直到他离世. 在80年代的时候, ARRON"掌握"了三维物体的绘制; 90年代时, AARON能够使用多种颜色进行绘画, 据称直到今天, ARRON仍然在创作. 不过, AARON的代码没有开源, 所以其作画的细节无从知晓, 但可以猜测, ARRON只是以一种复杂的编程方式描述了作者Harold本人对绘画的理解

2024-09-23

深入LLM与RAG 原理、实现与应用

一、LLM基本概念 大模型LLM(Large Language Model)是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别和推荐系统等。大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测。 大模型本质上是一个使用海量数据训练而成的深度神经网络模型,其巨大的数据和参数规模,实现了智能的涌现,展现出类似人类的智能。 LLM的使用场景非常广泛。首先,LLM可以用于文本生成,可以生成连贯的段落、文章、对话等,可以应用于自动写作、机器翻译等任务中。其次,LLM可以用于问答系统,可以回答复杂的问题,甚至进行对话式问答。再者,LLM可以用于语义理解和推理,可以进行情感分析、命名实体识别、文本分类等任务。此外,LLM还可以用于智能助理、机器人交互、自动摘要、信息提取等应用领域。总的来说,LLM在自然语言处理和人工智能领域

2024-09-20

架构师Django+FastAPI+uniapp+微服务秒杀系统

一、FastAPI 是什么? FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 并基于标准的 Python 类型提示。 关键特性: 快速:可与 NodeJS 和 Go 并肩的极高性能(归功于 Starlette 和 Pydantic)。最快的 Python web 框架之一。 高效编码:提高功能开发速度约 200% 至 300%。 更少 bug:减少约 40% 的人为(开发者)导致错误。 智能:极佳的编辑器支持。处处皆可自动补全,减少调试时间。 简单:设计的易于使用和学习,阅读文档的时间更短。 简短:使代码重复最小化。通过不同的参数声明实现丰富功能。bug 更少。 健壮:生产可用级别的代码。还有自动生成的交互式文档。 标准化:基于(并完全兼容)API 的相关开放标准:OpenAPI (以前被称为 Swagger) 和 JSON Schema。

2024-09-19

计算机图形学-从0开始构建一个OpenGL软光栅

一、OpenGL 简介 OpenGL(Open Graphics Library)是图形领域的工业标准,是一套跨编程语言、跨平台、专业的图形编程(软件)接口。它用于二维、三维图像,是一个功能强大,调用方便的底层图形库。它与硬件无关,可以在不同的平台如 Windows、Linux、Mac、Android、IOS 之间进行移植。因此,支持 OpenGL 的软件具有很好的移植性,可以获得非常广泛的应用(比如 PS 在部分功能和操作中使用 OpenGL 加速,以提高图像处理和渲染的性能)。 二、OpenGL 的主要特性 1. 低层次的渲染 API:OpenGL 提供了直接与图形硬件进行交互的能力。这使得它非常强大,因为它可以充分利用图形处理器(GPU)的性能。然而,这也意味着使用 OpenGL 需要对计算机图形学有深入的理解。

2024-09-13

2024爆火AI Agent智能应用从0到1(应用解读+项目实战)

AI最火Agent实战(打造你代理),下面我们先来认识一下AI Agent。 一、什么是AI Agent AI Agent,或称为人工智能代理,我更愿意称为AI智能体。它是一种模拟人类智能行为的人工智能系统,以大型语言模型(LLM)作为其核心引擎。它们能够感知其环境,做出决策,并执行任务以实现特定的目标。AI Agent的设计理念是赋予机器自主性、适应性和交互性,使其能够在复杂多变的环境中独立运作。 二、AI Agent的应用领域 AI Agent技术已广泛应用于多个领域,包括但不限于: 客户服务(Customer Service):自动回答客户咨询,提供个性化服务。 医疗诊断(Medical Diagnosis):辅助医生进行疾病诊断和治疗方案推荐。 股市交易(Stock Trading):自动化交易系统,根据市场数据做出买卖决策。 智能交通(Intelligent Transportation):自动驾驶车辆和交通管理系统。 教育辅导(Educational Tutoring):个性化学习助手,根据学生的学习进度提供辅导。

2024-09-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除