机器学习
NaLi_champion
双985硕 小镇做题家
展开
-
线性回归公式推导+代码解析——机器学习
文章目录线性回归的原理线性回归损失函数、代价函数、目标函数优化方法(梯度下降法、牛顿法、拟牛顿法)线性回归的评估指标sklearn参数详解 线性回归的原理 线性回归(linear regression)解决的是回归问题, 进入一家房产网,可以看到房价、面积、厅室呈现以下数据: 面积(x1) 厅室数量(x2) 价格(万元)(y) ...原创 2020-04-21 23:24:20 · 1019 阅读 · 0 评论 -
主成分分析(PCA)
主成分分析(PCA)原理详解: 只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。 思考: 我们如何得到这些包含最大差异性的主成分方向呢? 答案: 事实上,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。由于得到...原创 2020-03-26 21:38:54 · 389 阅读 · 0 评论