zhubeibei168
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自然语言处理之语言模型:Hidden Markov Model (HMM):概率论与统计基础
马尔可夫链是一种统计模型,它描述了一个具有有限状态集合的系统,其中系统从一个状态转移到另一个状态的概率仅依赖于当前状态,而不依赖于过去的状态。这种特性被称为“马尔可夫性质”。原创 2025-06-07 22:05:04 · 560 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram与基于神经网络的语言模型对比
在自然语言处理(NLP)领域,语言模型是预测文本序列中下一个词概率的关键技术。传统的n-gram模型基于统计方法,通过计算词频来预测词的概率,但这种方法在处理长距离依赖和词汇稀疏性问题时存在局限。随着深度学习的发展,神经网络语言模型因其能够捕捉更复杂的语言结构和语义信息而逐渐成为主流。原创 2025-06-07 22:19:47 · 894 阅读 · 0 评论 -
自然语言处理之语言模型:T5:自然语言生成任务实战
在文本摘要生成任务中,T5模型能够将长篇文章压缩成简短的摘要,同时保留文章的核心信息。这一任务在新闻、学术论文、报告等场景中极为有用,帮助用户快速理解文本内容。原创 2025-06-08 08:20:36 · 698 阅读 · 0 评论 -
自然语言处理之语言模型:XLNet:XLNet的双向自注意力机制
XLNet是基于Transformer架构的预训练语言模型,由Google和CMU的研究人员在2019年提出。与之前的语言模型如BERT相比,XLNet引入了双向自注意力机制,能够在预训练阶段同时考虑上下文信息,从而更好地理解词与词之间的关系。XLNet在多个NLP任务上取得了当时最佳的性能,包括问答、自然语言推理和情感分析等。原创 2025-06-09 22:43:08 · 773 阅读 · 0 评论 -
自然语言处理之语言模型:T5:自然语言理解任务实战
T5(Text-to-Text Transfer Transformer)是由Google Research提出的一种预训练模型,它将所有NLP任务统一为文本到文本的转换问题,包括问答、文本摘要、翻译和文本生成等。T5模型基于Transformer架构,通过大规模的预训练和微调,能够在多种NLP任务上取得优异的性能。# 导入必要的库# 初始化模型和分词器# 输入文本input_text = "自然语言处理是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。原创 2025-06-08 08:20:01 · 887 阅读 · 0 评论 -
自然语言处理之语言模型:T5:注意力机制深入理解
计算注意力权重:对于解码器的每个时间步,计算输入序列中每个位置的权重,这些权重反映了当前解码器状态与输入序列中各个位置的相关性。加权求和:根据计算出的权重,对输入序列的编码向量进行加权求和,生成一个上下文向量。融合上下文向量:将生成的上下文向量与解码器的当前状态融合,用于预测下一个输出。新闻文章:美国总统乔·拜登在白宫发表讲话,强调了应对气候变化的重要性。他宣布了一系列旨在减少温室气体排放的行政命令,包括暂停在联邦土地上进行新的石油和天然气租赁,以及重新加入巴黎气候协定。原创 2025-06-08 08:19:28 · 760 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:词向量与分布式表示
Word2Vec是Google在2013年提出的一种生成词向量的模型,它有两种主要的架构:CBOW(Continuous Bag of Words)和Skip-gram。这两种模型都旨在通过预测上下文或中心词来学习词向量,但它们的工作方式略有不同。Word2Vec是一种用于学习词向量的模型,它将自然语言中的词映射到高维空间中的向量,使得这些向量能够捕捉词与词之间的语义和语法关系。Word2Vec主要由两种模型构成:CBOW(Continuous Bag of Words)和Skip-gram。原创 2025-06-09 22:36:49 · 858 阅读 · 0 评论 -
自然语言处理之语言模型:XLNet:XLNet的性能优化与调参技巧
XLNet是基于Transformer架构的一种预训练语言模型,它在设计上借鉴了Transformer-XL的长序列建模能力,并创新性地引入了双向训练机制。原创 2025-06-09 22:43:48 · 980 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:Word2Vec模型的训练与优化
语言模型是NLP中用于预测给定序列中下一个词的概率的模型。它在机器翻译、语音识别、文本生成等任务中发挥着关键作用。语言模型可以基于统计(如N-gram模型)或基于深度学习(如RNN、LSTM、GRU和Transformer)。原创 2025-06-09 22:32:16 · 1114 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:高级Word2Vec:模型扩展与改进
Word2Vec模型由Google的Tomas Mikolov等人在2013年提出,它包含两种模型:CBOW(Continuous Bag of Words)和Skip-gram。CBOW模型是一种预测中心词的模型,基于上下文词来预测中心词。FastText是Facebook AI Research团队提出的一种词向量模型,它在Word2Vec的基础上进行了改进,特别是在处理未知词和多义词方面。FastText通过将词分解为子词(n-gram),为每个子词学习向量,然后将这些向量相加以得到词的向量表示。原创 2025-06-09 22:37:23 · 365 阅读 · 0 评论 -
自然语言处理之语言模型:XLNet:XLNet的性能优化与调参技巧
XLNet是基于Transformer架构的一种预训练语言模型,它在设计上借鉴了Transformer-XL的长序列建模能力,并创新性地引入了双向训练机制。原创 2025-06-09 22:44:18 · 818 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram与伦理责任
自然语言处理(Natural Language Processing,简称NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于20世纪50年代,随着计算机技术的飞速发展,NLP技术在21世纪初期得到了极大的提升。NLP是一门融合了语言学、计算机科学和数学的交叉学科。其目标是让计算机能够理解、解释和生成人类语言,从而实现人机之间的有效沟通。NLP技术广泛应用于机器翻译、情感分析、问答系统、文本分类、语音识别等领域。原创 2025-06-08 08:09:43 · 678 阅读 · 0 评论 -
自然语言处理之语言模型:XLNet:XLNet的训练策略与目标
通过上述内容,我们深入了解了XLNet模型的训练流程,包括其独特的Permutation Language Model策略,以及如何调整超参数以优化模型性能。此外,我们还探讨了如何将XLNet模型部署到实际应用中,以解决文本分类等自然语言处理任务。XLNet的双向预测能力和强大的语言理解能力使其成为处理复杂语言任务的理想选择。原创 2025-06-09 22:44:53 · 710 阅读 · 0 评论 -
自然语言处理之语言模型:T5:命名实体识别与T5
T5,全称为“Text-to-Text Transfer Transformer”,是由Google的研究人员在2019年提出的一种预训练语言模型。与传统的语言模型不同,T5将所有自然语言处理任务统一为文本到文本的转换问题,这包括但不限于机器翻译、文本摘要、问答系统、文本生成和命名实体识别等任务。命名实体识别(Named Entity Recognition,简称NER)是自然语言处理(NLP)领域的一个重要任务,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。原创 2025-06-08 08:15:00 · 793 阅读 · 0 评论 -
自然语言处理之语言模型:Hidden Markov Model (HMM):HMM在机器翻译中的应用
自然语言处理(Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于20世纪50年代,随着计算机技术的飞速发展,NLP技术在信息检索、文本挖掘、语音识别、机器翻译等领域得到了广泛的应用。原创 2025-06-06 20:58:13 · 1012 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:统计语言模型原理
为了解决n-gram模型的局限性,研究者们转向了基于神经网络的语言模型。这些模型能够学习更复杂的上下文依赖关系,处理语义和语法的复杂性,并在一定程度上缓解数据稀疏问题。在自然语言处理(NLP)领域,语言模型是预测文本序列中下一个词的概率分布的关键工具。n-gram模型,作为统计语言模型的一种,通过分析文本中连续的n个词的频率来估计词的概率。下面,我们将总结n-gram模型的核心原理和应用。原创 2025-06-07 22:17:43 · 882 阅读 · 0 评论 -
自然语言处理之语言模型:T5:机器翻译与T5
在TensorFlow或PyTorch中,可以使用Hugging Face的Transformers库来定义T5模型。# 导入Transformers库# 初始化T5模型和分词器。原创 2025-06-08 08:14:28 · 854 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:Word2Vec在问答系统中的应用
在自然语言处理(NLP)领域,问答系统(Question Answering System)是一种能够理解并回答人类自然语言提问的智能系统。它不仅需要理解问题的含义,还要从大量的文本数据中检索相关信息,最后生成准确的答案。问答系统广泛应用于搜索引擎、智能客服、教育辅助等领域,极大地提高了信息检索的效率和用户体验。原创 2025-06-09 22:35:04 · 610 阅读 · 0 评论 -
自然语言处理之语言模型:T5:模型微调技术
T5,全称为“Text-to-Text Transfer Transformer”,是由Google的研究人员在2020年提出的一种预训练语言模型。与传统的语言模型不同,T5将所有自然语言处理任务统一为文本到文本的转换问题,这包括但不限于文本分类、问答、摘要生成、翻译等。编码器:负责将输入文本转换为一系列的隐藏状态,这些状态包含了输入文本的语义信息。编码器由多层Transformer编码器块组成,每一层都包括自注意力机制和前馈神经网络。解码器:接收编码器的输出,并生成目标文本。原创 2025-06-08 08:15:47 · 567 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:n-gram模型的局限性与挑战
n-gram模型作为自然语言处理(NLP)领域中的一种基础概率语言模型,其核心思想是通过统计前n-1个词来预测下一个词的出现概率。这种模型在诸如文本生成、语音识别、机器翻译等任务中发挥了重要作用。然而,随着NLP技术的不断进步,n-gram模型的局限性逐渐显现,尤其是在处理长距离依赖、稀疏数据问题以及语义理解等方面。原创 2025-06-07 22:09:09 · 867 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:语言模型评估方法
n-gram模型是自然语言处理中一种基于统计的语言模型,它通过计算序列中n个连续词项的联合概率来预测下一个词的出现概率。一元模型(unigram):只考虑当前词出现的概率,不依赖于任何前词。二元模型(bigram):考虑当前词和前一个词的联合概率。三元模型(trigram):考虑当前词和前两个词的联合概率。n-gram模型通过统计词序列的频率来预测词的概率,是自然语言处理中一种简单而有效的语言模型。通过调整n的大小,可以平衡模型的复杂度和预测能力。原创 2025-06-07 22:18:13 · 707 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:Word2Vec之CBOW模型详解
文本预处理是NLP中不可或缺的步骤,它为模型提供干净、结构化的输入。词向量,尤其是Word2Vec的CBOW模型,能够捕捉词与词之间的复杂关系,是构建高效语言模型的基础。语言模型在NLP的多个领域中发挥着核心作用,能够理解和生成自然语言,从而推动了NLP技术的发展和应用。请注意,上述代码示例中的中文停用词和分词功能需要相应的库支持,如jieba和nltk的中文停用词列表。在实际应用中,可能需要根据具体需求调整预处理步骤和参数。在Word2Vec的CBOW模型中,目标是基于一个词的上下文来预测这个词本身。原创 2025-06-09 22:35:35 · 683 阅读 · 0 评论 -
自然语言处理之语言模型:T5:文本生成与T5应用
语言模型是NLP中用于预测给定序列中下一个词的概率分布的模型。它通过学习大量文本数据,理解语言的统计规律,从而能够生成连贯的文本或评估文本的合理性。Transformer模型由Vaswani等人在2017年提出,其核心创新点在于自注意力机制(self-attention),它允许模型在处理序列数据时并行计算,大大提高了训练速度。此外,Transformer还引入了位置编码(Positional Encoding),以解决模型无法感知词序的问题。原创 2025-06-08 08:16:49 · 1038 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:n-gram模型的实际项目实施
文本预处理是NLP项目中不可或缺的步骤,它包括分词、去除停用词、词干提取、词形还原、词性标注和N-gram生成等技术。通过这些技术,可以将原始文本转换为结构化数据,为后续的分析和建模奠定基础。: 模型只考虑当前词出现的概率,不考虑其前后文。: 模型考虑当前词和其前一个词的组合出现的概率。: 模型考虑当前词和其前两个词的组合出现的概率。n-gram: 模型考虑当前词和其前n-1个词的组合出现的概率。原创 2025-06-07 22:09:42 · 707 阅读 · 0 评论 -
自然语言处理之语言模型:T5:文本摘要技术与T5
T5,全称为“Text-to-Text Transfer Transformer”,是由Google的研究人员在2019年提出的一种预训练语言模型。与传统的语言模型不同,T5将所有自然语言处理任务统一为文本到文本的转换问题,这包括但不限于机器翻译、文本摘要、问答、文本生成等。T5的架构基于Transformer,它是一个完全基于自注意力机制的模型,能够处理序列数据,如文本。# 导入必要的库# 初始化T5模型和分词器# 定义输入文本。原创 2025-06-08 08:17:20 · 920 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:Word2Vec之Skip-Gram模型详解
语言模型是NLP中用于预测给定序列中下一个词的概率的模型。它在许多NLP任务中都扮演着重要角色,如机器翻译、语音识别、文本生成等。语言模型可以基于统计或基于神经网络,其中基于神经网络的语言模型(如RNN、LSTM、GRU和Transformer)在近年来取得了显著的成果。在深入探讨Skip-Gram模型之前,我们先简要回顾一下CBOW(Continuous Bag of Words)模型。CBOW模型的目标是通过上下文词预测中心词。原创 2025-06-09 22:36:18 · 716 阅读 · 0 评论 -
自然语言处理之语言模型:XLNet:XLNet的实现细节与代码解读
Permutation语言模型是XLNet的核心创新之一,它通过引入序列的随机排列来克服传统语言模型的单向性限制。在传统的语言模型中,如Transformer-XL,模型只能看到当前词及其历史上下文,而未来的上下文信息则被屏蔽,以避免信息泄露。然而,这种单向性限制了模型在处理长距离依赖时的性能,因为模型无法同时考虑当前词的前后上下文。为了解决这个问题,XLNet采用了Permutation语言模型,它允许模型在训练过程中看到序列的多个随机排列。具体来说,对于一个输入序列x1x2xTx1。原创 2025-06-09 22:42:44 · 513 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:自然语言处理导论
自然语言处理(Natural Language Processing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于两者之间,是连接人与计算机的一座桥梁。原创 2025-06-07 22:18:44 · 850 阅读 · 0 评论 -
自然语言处理之语言模型:Hidden Markov Model (HMM):HMM在命名实体识别中的应用
Hidden Markov Model (HMM) 是一种统计模型,特别适用于处理具有时间序列特性的数据。在自然语言处理中,HMM 被广泛应用于语音识别、词性标注、命名实体识别等任务。HMM 由两个随机过程组成:一个不可见的马尔可夫过程,用于描述状态的转移;另一个是依赖于当前状态的随机过程,用于描述观测值的生成。在命名实体识别(NER)中,Hidden Markov Model (HMM) 被广泛应用于序列标注任务。HMM 是一种统计模型,特别适合处理时间序列或序列数据。原创 2025-06-06 20:58:52 · 580 阅读 · 0 评论 -
自然语言处理之语言模型:T5:情感分析与T5
文本摘要是将长篇文本压缩为较短的版本,同时保留关键信息。这在新闻摘要、学术论文摘要生成等方面有重要应用。# 示例代码:使用Hugging Face的Transformers库进行文本摘要result = summarizer("自然语言处理是人工智能领域的一个重要分支,它关注如何使计算机能够理解、解释和生成人类语言。NLP结合了计算机科学、人工智能和语言学的知识,旨在处理和分析文本数据,从而实现机器与人类之间的有效沟通。自动文摘是指从大量文档中自动提取关键信息,生成摘要。原创 2025-06-08 08:16:18 · 928 阅读 · 0 评论 -
自然语言处理之语言模型:Hidden Markov Model (HMM):HMM在语音识别中的应用
Hidden Markov Model (HMM) 是一种统计模型,特别适用于处理具有时间序列特性的数据,如语音信号、文本序列等。HMM 假设系统由一系列不可见(隐藏)的状态组成,每个状态在特定时间点产生一个观测值。HMM 的核心在于,虽然我们不能直接观察到状态,但我们可以通过观测值来推断状态的序列。在语音识别领域,Hidden Markov Model (HMM) 作为一种经典的语言模型,其未来的发展趋势主要体现在与深度学习技术的融合、模型的优化以及在特定场景下的应用拓展上。原创 2025-06-06 20:59:26 · 534 阅读 · 0 评论 -
自然语言处理之语言模型:T5:预训练模型原理与实践
T5模型是一个基于Transformer架构的预训练模型。在TensorFlow中,可以使用t5.models模块来定义模型。# 定义模型。原创 2025-06-08 08:18:54 · 705 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:自然语言生成与n-gram
文本预处理是NLP任务中不可或缺的步骤,它通过清洗、分词、词干化、去除停用词等操作,将原始文本转换为计算机可以理解和处理的形式,为后续的NLP任务打下坚实的基础。n-gram模型是自然语言处理中一种基于统计的语言模型,用于预测序列中下一个词的概率。n-gram中的“n”代表的是模型考虑的前n-1个词来预测下一个词。例如,一个二元模型(bigram)会基于前一个词来预测下一个词,而三元模型(trigram)则基于前两个词来预测下一个词。原创 2025-06-07 22:19:15 · 691 阅读 · 0 评论 -
自然语言处理之语言模型:T5:预训练模型原理与实践
T5模型是一个基于Transformer架构的预训练模型。在TensorFlow中,可以使用t5.models模块来定义模型。# 定义模型。原创 2025-06-08 08:18:22 · 739 阅读 · 0 评论 -
自然语言处理之语言模型:T5:序列到序列学习
文本摘要是将长篇文章压缩为较短的摘要的过程,同时保留文章的主要信息。T5模型同样可以用于文本摘要任务。加载预训练的T5模型和分词器,然后使用它们生成摘要。# 加载预训练模型和分词器# 定义摘要生成函数# 构建输入文本。原创 2025-06-08 08:17:51 · 965 阅读 · 0 评论 -
自然语言处理之语言模型:Hidden Markov Model (HMM):HMM的学习问题与Baum-Welch算法
Hidden Markov Model (HMM) 是一种统计模型,特别适用于含有时间序列特性的数据,如语音识别、手写识别、生物信息学中的序列分析以及自然语言处理中的词性标注等。HMM 由一组隐藏状态和一组可观测状态组成,其中隐藏状态之间的转换遵循马尔可夫性质,即当前状态仅依赖于前一个状态,而与更早的状态无关。HMM 是一种强大的模型,用于处理含有时间序列特性的数据。通过定义状态、观测以及转移和发射概率,我们可以构建 HMM 模型。原创 2025-06-06 20:55:46 · 1033 阅读 · 0 评论 -
自然语言处理之语言模型:n-gram:n-gram在机器翻译中的角色
n-gram模型是一种基于统计的语言模型,它用于预测序列中下一个词的概率。1-gram(一元模型):只考虑当前词出现的概率。2-gram(二元模型):考虑当前词和前一个词的组合出现的概率。3-gram(三元模型):考虑当前词和前两个词的组合出现的概率。以此类推。n-gram模型通过计算序列中每个n-gram的频率来估计概率,这使得模型能够捕捉到语言中词的序列性,从而在自然语言处理任务中,如机器翻译、语音识别、文本生成等,提供更准确的预测。原创 2025-06-07 22:15:23 · 761 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:自然语言预处理技术
GloVe(Global Vectors for Word Representation)是斯坦福大学提出的一种词嵌入模型,它旨在解决Word2Vec模型的局限性,特别是缺乏全局信息的问题。GloVe通过构建一个共现矩阵,其中每个元素表示词i和词j在语料库中同时出现的次数,然后通过最小化词向量之间的预测共现矩阵与实际共现矩阵之间的差异来训练模型。这种方法使得GloVe能够更好地捕捉词的全局统计信息,包括词的频率和共现关系。原创 2025-06-09 22:40:25 · 764 阅读 · 0 评论 -
自然语言处理之语言模型:Hidden Markov Model (HMM):马尔可夫链基础理论
马尔可夫链(Markov Chain)是一种统计模型,它描述了一系列状态的序列,其中下一个状态的概率仅依赖于当前状态,而不依赖于序列中更早的状态。这种特性被称为“马尔可夫性质”。马尔可夫链在自然语言处理、语音识别、生物信息学等领域有着广泛的应用。假设我们有一个天气系统,它只有两种状态:“晴天”和“雨天”。如果今天是晴天,那么明天是晴天的概率是0.7,是雨天的概率是0.3;如果今天是雨天,那么明天是晴天的概率是0.4,是雨天的概率是0.6。这个系统就可以用一个马尔可夫链来描述。在马尔可夫链中,状态空间(Sta原创 2025-06-07 22:06:24 · 836 阅读 · 0 评论 -
自然语言处理之语言模型:Word2Vec:Word2Vec在机器翻译中的应用
机器翻译(Machine Translation, MT)是自然语言处理(NLP)领域的一个重要分支,旨在将文本从一种语言自动转换为另一种语言。传统的机器翻译方法依赖于统计模型和大量的平行语料库,而近年来,神经网络机器翻译(Neural Machine Translation, NMT)的兴起,使得机器翻译的准确性和流畅性有了显著的提升。NMT模型通常使用编码器-解码器架构,其中编码器将源语言句子编码为向量表示,解码器则根据这些向量生成目标语言句子。原创 2025-06-09 22:32:59 · 1061 阅读 · 0 评论