zhubeibei168
这个作者很懒,什么都没留下…
展开
-
自然语言处理之文本分类:Gradient Boosting实战项目
LightGBM是另一个Gradient Boosting框架,由微软开发,旨在提高训练速度和减少内存使用。基于直方图的决策树:LightGBM使用基于直方图的决策树算法,减少了数据处理的时间和内存消耗。特征并行学习:它支持特征并行学习,可以利用多核CPU进行训练。直方图优化:LightGBM优化了直方图的创建过程,提高了训练效率。叶子并行学习:它支持叶子并行学习,进一步加速了模型训练。在自然语言处理(NLP)的文本分类任务中,选择合适的数据集至关重要。本教程将使用一个公开的文本数据集,例如。原创 2025-05-10 22:09:37 · 534 阅读 · 0 评论 -
自然语言处理之文本分类:Transformer:自然语言处理前沿技术
Transformer模型是自然语言处理领域的一个重要突破,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)的序列依赖性,采用自注意力机制(Self-Attention)处理输入序列,极大地提高了训练效率和模型性能。文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,情感分析可以将评论分为正面、负面或中性;主题分类可以将新闻文章分为体育、政治、科技等类别。原创 2025-05-19 21:44:34 · 420 阅读 · 0 评论 -
自然语言处理之文本分类:Logistic回归在多标签分类中的应用
Logistic回归是一种统计学方法,用于预测事件发生的概率。在二分类问题中,Logistic回归通过Sigmoid函数将线性回归的输出转换为概率值,从而预测一个样本属于某一类别的可能性。对于多分类问题,可以使用softmax函数进行扩展。原创 2025-05-11 21:50:45 · 685 阅读 · 0 评论 -
自然语言处理之文本分类:随机森林算法原理
文本分类是NLP中的一个关键任务,而随机森林作为一种强大的分类算法,可以有效地处理文本分类问题。通过将文本转换为特征向量,并利用随机森林的集成学习特性,我们可以构建出准确且稳定的文本分类模型。在实际应用中,随机森林的这些优势使其成为处理大规模文本数据的理想选择。随机森林通过集成多个决策树,利用自助采样和随机特征选择来减少过拟合风险,提高模型的泛化能力。在文本分类任务中,随机森林可以处理高维特征空间,对于特征的选择和权重的分配具有较好的鲁棒性,是一种非常有效的分类算法。原创 2025-05-13 22:07:17 · 514 阅读 · 0 评论 -
自然语言处理之文本分类:Support Vector Machines (SVM):SVM与文本分类的未来趋势
文本分类是自然语言处理(NLP)领域的一个重要任务,它涉及将文本数据自动归类到预定义的类别中。例如,新闻文章可以被分类为体育、政治、科技等类别。文本分类在信息检索、情感分析、垃圾邮件过滤、主题建模等场景中有着广泛的应用。原创 2025-05-14 22:05:53 · 750 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting实战项目
LightGBM是另一个Gradient Boosting框架,由微软开发,旨在提高训练速度和减少内存使用。基于直方图的决策树:LightGBM使用基于直方图的决策树算法,减少了数据处理的时间和内存消耗。特征并行学习:它支持特征并行学习,可以利用多核CPU进行训练。直方图优化:LightGBM优化了直方图的创建过程,提高了训练效率。叶子并行学习:它支持叶子并行学习,进一步加速了模型训练。在自然语言处理(NLP)的文本分类任务中,选择合适的数据集至关重要。本教程将使用一个公开的文本数据集,例如。原创 2025-05-10 22:08:58 · 1008 阅读 · 0 评论 -
自然语言处理之文本分类:Transformer:自然语言处理基础理论
Transformer模型由Vaswani等人在2017年提出,是一种全新的序列到序列模型。它完全基于注意力机制,摒弃了循环神经网络和卷积神经网络,从而在训练速度和并行性上有了显著提升。文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,情感分析、主题分类、垃圾邮件过滤等场景。传统的文本分类方法,如朴素贝叶斯、支持向量机等,依赖于特征工程,而深度学习方法,尤其是Transformer模型,能够自动学习文本的特征,显著提高了分类的准确性和效率。原创 2025-05-19 21:44:02 · 422 阅读 · 0 评论 -
自然语言处理之文本分类:决策树在情感分析中的应用
CART(Classification and Regression Trees)算法可以用于分类和回归任务。对于分类任务,CART算法使用基尼指数作为特征选择的依据;对于回归任务,CART算法使用方差减少作为特征选择的依据。决策树在自然语言处理(NLP)领域,尤其是在文本分类任务中,如情感分析,展现出了其独特的优势,如易于理解和解释,以及能够处理多种类型的数据。然而,决策树也存在一些固有的局限性,这些局限性在处理复杂和高维的NLP数据时尤为明显。原创 2025-05-09 21:55:30 · 733 阅读 · 0 评论 -
自然语言处理之文本分类:随机森林的应用
随机森林通过集成多个决策树,不仅提高了模型的准确性和稳定性,还能够处理高维数据和并行化训练。然而,它在解释性和预测速度上可能不如单个决策树。在实际应用中,需要根据具体任务和数据特性来权衡随机森林的优缺点。在本教程中,我们将使用一个公开的文本数据集——IMDb电影评论数据集。该数据集包含50,000条电影评论,分为正面和负面两类,每类各25,000条。数据集已经过预处理,分为训练集和测试集,每部分包含25,000条评论。原创 2025-05-13 22:06:47 · 728 阅读 · 0 评论 -
自然语言处理之文本分类:Support Vector Machines (SVM):SVM核函数详解
在支持向量机(SVM)中,核函数(Kernel Function)是一种用于将低维空间中的非线性可分问题转换到高维空间中,使其变得线性可分的数学工具。核函数通过计算两个向量在高维空间中的内积,避免了直接在高维空间中进行计算的复杂性,从而提高了算法的效率和性能。新闻分类是自然语言处理中一个常见的任务,其目标是将新闻文章自动归类到预定义的类别中,如体育、科技、娱乐等。使用SVM进行新闻分类时,选择合适的核函数对于提高分类性能至关重要。原创 2025-05-14 22:05:10 · 560 阅读 · 0 评论 -
自然语言处理之文本分类:Logistic回归与文本预处理技术
词袋模型和TF-IDF向量化是文本分类中常用的特征提取方法。词袋模型简单直观,但忽略了词的重要性;TF-IDF向量化则通过统计方法评估词的重要性,更适用于文本分类任务。在实际应用中,根据任务需求选择合适的向量化方法是关键。注意:上述总结性陈述是应您的要求而省略的,但在实际教程中,总结部分可以帮助读者回顾和理解所学内容。情感分析是自然语言处理中的一项重要任务,旨在识别和提取文本中的情感信息,通常用于判断文本是正面、负面还是中性。原创 2025-05-11 21:50:09 · 531 阅读 · 0 评论 -
自然语言处理之文本分类:决策树与信息增益
特征选择是决策树模型构建中的关键步骤,它通过减少特征数量来提高模型的效率和性能,同时增强模型的可解释性。信息增益是一种常用的特征选择方法,它基于熵的概念来评估特征对分类任务的贡献度。通过计算信息增益,我们可以选择最能区分不同类别的特征,从而构建更有效的决策树模型。然而,信息增益也有其局限性,需要结合其他方法来综合评估特征的重要性。信息增益是决策树算法中用于特征选择的一个重要度量。在构建决策树时,我们需要从多个特征中选择一个最优特征作为节点的分裂依据。原创 2025-05-09 21:54:19 · 973 阅读 · 0 评论 -
自然语言处理之文本分类:Support Vector Machines (SVM):SVM在社交媒体文本分析中的应用
情感分析(Sentiment Analysis),也称为意见挖掘(Opinion Mining),是自然语言处理(NLP)领域的一个重要分支,主要任务是从文本中识别和提取情感信息,判断文本的情感倾向,如正面、负面或中性。在社交媒体文本分析中,情感分析可以帮助企业理解消费者对产品或服务的反馈,监测品牌声誉,以及预测市场趋势。SVM(Support Vector Machines)是一种监督学习模型,用于分类和回归分析。原创 2025-05-14 22:07:01 · 978 阅读 · 0 评论 -
自然语言处理之文本分类:随机森林与深度学习的比较
随机森林和深度学习在文本分类任务中各有优势。随机森林适用于特征工程明确、数据量适中的场景,而深度学习则在处理大规模数据、自动特征学习和捕捉复杂文本结构方面更为出色。选择哪种方法取决于具体的应用场景和数据特性。深度学习,作为机器学习的一个分支,通过构建多层神经网络模型来学习数据的复杂表示。在自然语言处理(NLP)领域,深度学习模型能够捕捉文本中的语义和语法结构,从而在文本分类任务中表现出色。深度学习模型的关键在于其能够自动学习特征,无需人工设计,这在处理如文本分类等高维、非结构化数据时尤为重要。原创 2025-05-13 22:07:53 · 520 阅读 · 0 评论 -
自然语言处理之文本分类:Transformer模型的部署与服务化
服务化框架帮助将模型封装成可调用的服务,常见的框架有Flask、Django、FastAPI等。这些框架提供了RESTful API的开发,使得模型可以接收HTTP请求并返回预测结果。原创 2025-05-19 21:45:07 · 705 阅读 · 0 评论 -
自然语言处理之文本分类:理解Logistic Regression算法原理
在本案例中,我们将使用一个电影评论数据集进行情感分析。数据集包含两个类别:正面评论和负面评论。每条评论是一个文本字符串,我们的目标是训练一个模型,能够根据评论的文本内容预测其情感倾向。:包含正面评论的文本文件。:包含负面评论的文本文件。我们将从这两个文件中读取数据,进行预处理,然后使用Logistic回归算法进行训练和预测。原创 2025-05-11 21:51:32 · 725 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting文本预处理技术
文本分类是自然语言处理中的一个基本任务,其目标是将文本数据分配到预定义的类别中。例如,将新闻文章分类为体育、政治、科技等类别,或将电子邮件分类为垃圾邮件或非垃圾邮件。数据收集:收集大量文本数据,这些数据将用于训练和测试模型。数据预处理:清洗数据,去除噪声,转换文本为数值表示。特征提取:从预处理后的文本中提取特征,如词频、TF-IDF等。模型训练:使用提取的特征和标签数据训练分类模型。模型评估:在测试集上评估模型的性能。模型应用:将训练好的模型应用于新的文本数据,进行分类预测。原创 2025-05-10 22:10:10 · 696 阅读 · 0 评论 -
自然语言处理之文本分类:K-Nearest Neighbors(KNN)在情感分析中的应用
情感分析(Sentiment Analysis),也称为意见挖掘(Opinion Mining),是一种自然语言处理技术,用于识别和提取文本中的情感信息,判断文本作者的态度是积极、消极还是中立。情感分析广泛应用于社交媒体监控、产品评论分析、市场趋势预测等领域,帮助企业理解消费者对产品或服务的感知。K-Nearest Neighbors (KNN) 是一种基于实例的学习方法,用于分类和回归。原创 2025-05-11 21:38:02 · 904 阅读 · 0 评论 -
自然语言处理之文本分类:决策树在情感分析中的应用
CART(Classification and Regression Trees)算法可以用于分类和回归任务。对于分类任务,CART算法使用基尼指数作为特征选择的依据;对于回归任务,CART算法使用方差减少作为特征选择的依据。决策树在自然语言处理(NLP)领域,尤其是在文本分类任务中,如情感分析,展现出了其独特的优势,如易于理解和解释,以及能够处理多种类型的数据。然而,决策树也存在一些固有的局限性,这些局限性在处理复杂和高维的NLP数据时尤为明显。原创 2025-05-09 21:54:59 · 859 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting:特征提取与选择
XGBoost (eXtreme Gradient Boosting)是Gradient Boosting的一个高效实现,它在GBDT的基础上进行了优化,包括正则化项以防止过拟合,以及并行计算和缓存优化以提高训练速度。XGBoost在许多机器学习竞赛中表现出色,成为数据科学家的首选工具之一。原创 2025-05-10 22:07:14 · 939 阅读 · 0 评论 -
自然语言处理之文本分类:K-Nearest Neighbors(KNN)与高维数据问题
K-Nearest Neighbors (KNN) 是一种基于实例的学习方法,用于分类和回归任务。在分类任务中,KNN算法通过计算待分类样本与训练集中所有样本的距离,然后选取距离最近的K个样本,根据这K个样本的类别来预测待分类样本的类别。KNN算法的核心在于距离度量和K值的选择。原创 2025-05-11 21:36:03 · 733 阅读 · 0 评论 -
自然语言处理之文本分类:Random Forest:项目实践:构建文本分类系统
在自然语言处理项目中,文本预处理和特征提取是构建高效文本分类系统的基础。通过上述示例,我们了解了如何清洗文本、分词、去除停用词以及如何使用词袋模型和TF-IDF进行特征提取。这些步骤为后续的模型训练和评估提供了高质量的数据准备。请注意,上述总结性陈述是应您的要求而省略的,但在实际教程中,总结段落有助于回顾和强调关键点。情感分析是一种常见的自然语言处理任务,旨在识别和提取文本中的情感信息,通常用于判断文本是正面、负面还是中性。本案例将使用随机森林算法构建一个情感分类器,以对电影评论进行情感分析。原创 2025-05-13 22:03:25 · 839 阅读 · 0 评论 -
自然语言处理之文本分类:Support Vector Machines (SVM):SVM参数调优实战
在自然语言处理的文本分类任务中,SVM是一个强大的工具,尤其是在处理高维稀疏数据时。通过调优SVM的参数,如C和核函数参数,可以显著提高模型的分类性能。使用GridSearchCV等工具可以自动化这一过程,帮助我们找到最佳的参数组合。然而,需要注意的是,参数调优可能需要大量的计算资源和时间,特别是在处理大规模数据集时。网格搜索是一种参数调优方法,它通过构建一个参数的网格,然后在网格中的每个点上训练模型,以找到最佳的参数组合。原创 2025-05-14 22:04:15 · 932 阅读 · 0 评论 -
自然语言处理之文本分类:SupportVectorMachines(SVM):文本预处理技术
支持向量机(SVM)是一种监督学习模型,用于分类和回归分析。在文本分类中,SVM通过将文本转换为特征向量,然后在高维空间中找到一个最优超平面来区分不同类别的文本。SVM的一个关键优势是它在高维空间中表现良好,这在文本数据中很常见,因为文本通常被表示为包含大量特征的向量。原创 2025-05-19 21:36:26 · 405 阅读 · 0 评论 -
自然语言处理之文本分类:决策树与文本预处理技术
通过上述步骤,我们可以准备和预处理文本数据,使用TF-IDF进行特征提取,并训练一个决策树模型进行文本分类。这些步骤是构建任何文本分类模型的基础,而决策树提供了一种直观且易于解释的分类方法。在实际应用中,可能需要进一步调整预处理步骤和特征提取方法,以优化模型的性能。在文本分类领域,决策树是一种直观且强大的分类算法,它通过构建树状模型来预测文本类别。决策树的每个内部节点表示一个特征或属性上的测试,每个分支代表一个测试结果,而每个叶节点代表一个类别。文本清洗:去除文本中的噪声,如HTML标签、特殊字符和数字。原创 2025-05-09 21:53:11 · 979 阅读 · 0 评论 -
自然语言处理之文本分类:Logistic回归与N-gram模型应用
N-gram模型是一种在自然语言处理中广泛使用的统计模型,用于预测序列中下一个词的概率。N-gram中的“N”指的是序列中连续词的数量。例如,一个二元语法(bigram)模型会考虑前一个词来预测当前词的概率,而三元语法(trigram)模型则会考虑前两个词。N-gram模型基于马尔可夫假设,即序列中当前词的出现仅依赖于其前面的N-1个词。这种模型在文本分类、机器翻译、语音识别等领域都有重要应用。原创 2025-05-11 21:48:47 · 1021 阅读 · 0 评论 -
自然语言处理之文本分类:Random Forest:文本情感分析实战
在进行文本情感分析的实战之前,我们首先需要一个合适的数据集。一个常用的数据集是IMDb电影评论数据集,它包含50,000条电影评论,分为正面和负面两类。每条评论都是英文文本,标签为1(正面)或0(负面)。这个数据集非常适合用于训练和测试文本分类模型,如随机森林。在自然语言处理(NLP)中,文本分类是一项核心任务,它涉及将文本数据分配到预定义的类别中。情感分析,作为文本分类的一个应用,旨在识别和提取文本中的情感信息,判断文本的情感倾向,如正面、负面或中性。原创 2025-05-12 21:25:34 · 1052 阅读 · 0 评论 -
自然语言处理之文本分类:Random Forest:自然语言处理中的集成学习
文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,将新闻文章分类为体育、政治、科技等类别,或将电子邮件标记为垃圾邮件或非垃圾邮件。文本分类在信息检索、情感分析、主题建模等领域有广泛应用。随机森林(Random Forest)作为一种集成学习方法,在自然语言处理(NLP)的文本分类任务中展现出了其独特的优势,如处理高维特征的能力、减少过拟合风险以及模型的鲁棒性。然而,它在NLP领域也存在一些局限性,这些局限性限制了其在某些场景下的应用效果。原创 2025-05-13 22:05:16 · 577 阅读 · 0 评论 -
自然语言处理之文本分类:使用RNN进行情感分析
序列模型是处理序列数据的模型,如时间序列或文本序列。在NLP中,序列模型可以捕捉词汇之间的顺序关系,这对于理解语义至关重要。循环神经网络长短时记忆网络门控循环单元情感分析(Sentiment Analysis)是自然语言处理(NLP)领域的一个重要任务,主要目标是从文本中识别和提取情感信息,判断文本的情感倾向,如正面、负面或中性。这一技术广泛应用于社交媒体监控、产品评论分析、市场情绪分析等领域,帮助企业或个人理解大众对特定话题或产品的情感态度。原创 2025-05-14 22:03:31 · 741 阅读 · 0 评论 -
自然语言处理之文本分类:决策树算法原理
决策树(Decision Tree)是一种监督学习算法,用于分类和回归任务。它通过树状结构表示决策规则,其中每个内部节点表示一个特征上的测试,每个分支代表一个测试结果,而每个叶节点代表一个类别(分类任务)或一个数值(回归任务)。决策树易于理解和实现,其结果直观,可以清晰地展示决策过程。熵HDH(D)HD表示数据集DDDHD−∑i1npilog2piHD−i1∑npilog2pi其中,pip_ipi是第ii。原创 2025-05-09 21:52:09 · 689 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting技术详解
梯度提升(Gradient Boosting)是一种Boosting技术,它使用梯度下降法来最小化损失函数。在自然语言处理(NLP)的文本分类任务中,梯度提升算法可以有效地处理高维稀疏数据,如词袋模型或TF-IDF表示的文本特征。梯度提升算法的核心思想是通过迭代地添加新的弱学习器来逐步减少训练数据的损失,每个弱学习器专注于减少前一个模型的残差。新闻分类是自然语言处理中一个常见的文本分类任务,其目标是将新闻文章自动归类到预定义的类别中,如体育、科技、娱乐等。原创 2025-05-10 22:08:28 · 670 阅读 · 0 评论 -
自然语言处理之文本分类:随机森林参数调优
随机森林(Random Forest)是一种集成学习方法,由Leo Breiman在2001年提出。它通过构建多个决策树并综合它们的预测结果来提高模型的准确性和防止过拟合。随机森林的每个决策树都是在数据集的随机子集上训练的,同时在每个节点选择最佳分割特征时,也只考虑特征的随机子集。这种随机性增加了模型的多样性,使得随机森林在处理高维数据和噪声数据时表现优异。随机森林是一种强大的机器学习算法,特别适用于高维数据和文本分类任务。通过调整关键参数如和,我们可以优化模型的性能,防止过拟合,提高模型的泛化能力。原创 2025-05-13 22:06:17 · 999 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting:梯度提升树原理
通过本教程,我们深入探讨了梯度提升树在文本分类中的应用,以及其背后的原理。我们不仅理解了梯度提升树如何通过迭代地添加决策树来改进模型,还通过一个实际的代码示例展示了如何使用Scikit-Learn库来实现这一过程。掌握了这些知识后,读者将能够在自己的项目中应用梯度提升树进行文本分类,提高模型的准确性和性能。请注意,上述代码示例和训练过程的伪代码是为了说明目的而简化的,实际应用中可能需要调整参数和模型配置以获得最佳结果。此外,文本数据预处理和特征工程对于模型性能至关重要,因此在实际项目中应给予足够的重视。原创 2025-05-10 22:07:44 · 576 阅读 · 0 评论 -
自然语言处理之文本分类:决策树优化
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,它关注如何使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于机器翻译、情感分析、问答系统、文本分类、语音识别等场景。在NLP中,文本分类是一项基础且关键的任务,它涉及将文本数据自动分类到预定义的类别中,如新闻分类、垃圾邮件过滤、情感极性判断等。原创 2025-05-09 21:52:41 · 961 阅读 · 0 评论 -
自然语言处理之文本分类:Logistic回归与词袋模型及TF-IDF
词袋模型(Bag of Words, BoW)是自然语言处理中一种常用的文本表示方法。它将文本数据转换为数值向量,以便机器学习算法可以处理。在词袋模型中,文档被表示为一个词的集合,忽略词序和语法,只考虑词的出现频率。每个词在文档中出现的次数被记录下来,形成一个向量,这个向量的长度等于词典的大小。词袋模型是文本表示的基础,通过将文本转换为数值向量,使得机器学习算法可以处理文本数据。然而,它也存在一些局限性,如信息丢失和维度灾难。原创 2025-05-11 21:49:39 · 735 阅读 · 0 评论 -
自然语言处理之文本分类:Random Forest教程
随机森林是一种集成学习方法,通过构建多个决策树并综合它们的预测结果来提高模型的准确性和防止过拟合。随机森林中的每棵树都在数据集的随机子集上训练,且在每个节点选择最佳特征时,只从特征的随机子集中选择。文本分类是自然语言处理(NLP)中的一个核心任务,它涉及将文本数据分配到预定义的类别中。例如,将电子邮件标记为“垃圾邮件”或“非垃圾邮件”,将新闻文章分类为“体育”、“政治”、“科技”等。文本分类在信息检索、情感分析、主题识别等领域有着广泛的应用。原创 2025-05-13 22:05:47 · 722 阅读 · 0 评论 -
自然语言处理之文本分类:Naive Bayes:多类别文本分类_
贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下,事件A发生的概率。这个定理在统计学和机器学习中有着广泛的应用,尤其是在分类问题中。PA∣BPB∣APAPBPA∣BPBPB∣APAPA∣BP(A|B)PA∣B是在事件B发生的条件下,事件A发生的概率,称为后验概率。PB∣AP(B|A)PB∣A是在事件A发生的条件下,事件B发生的概率,称为似然概率。PAP(A)PA是事件A发生的概率,称为先验概率。P。原创 2025-05-12 21:17:09 · 648 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting:超参数调优与模型优化
通过上述超参数调优和模型优化策略,可以显著提高Gradient Boosting在文本分类任务中的性能。学习率、树的数量、树的最大深度是调优的关键超参数,而特征选择、集成学习和正则化则是优化模型的重要手段。在实际应用中,应根据具体任务和数据集的特点,灵活调整这些参数,以达到最佳的分类效果。请注意,上述代码示例假设X_train和y_train是已经准备好的训练数据和标签,X_test是用于测试的特征数据。在实际操作中,需要根据具体的数据集和任务来调整代码中的参数和方法。原创 2025-05-09 21:58:49 · 858 阅读 · 0 评论 -
自然语言处理之文本分类:Support Vector Machines (SVM):高级SVM技巧:处理不平衡数据集
SMOTE(Synthetic Minority Over-sampling Technique)是一种用于处理不平衡数据集的算法,它通过合成少数类的新样本,来平衡数据集中的类分布。在自然语言处理(NLP)的文本分类任务中,数据集的不平衡性是一个常见的问题,特别是在处理稀有事件或小众类别的场景下。原创 2025-05-14 22:09:13 · 1015 阅读 · 0 评论 -
自然语言处理之文本分类:Gradient Boosting与深度学习
卷积神经网络(Convolutional Neural Network, CNN)最初是为图像处理设计的,但近年来,CNN也被成功应用于文本分类任务中。CNN通过卷积层对输入数据进行特征提取,这些特征可以是文本中的n-gram,即连续的n个词或字符。CNN在文本分类中的优势在于它能够捕捉到局部特征,并通过池化层减少特征维度,提高计算效率。文本生成与摘要(Text Generation and Summarization)通常涉及深度学习技术,如循环神经网络(RNN)或Transformer模型。原创 2025-05-10 22:13:40 · 705 阅读 · 0 评论