Solution:
观察数据范围发现点数和边数比较小,
n
,
m
≤
3000
n, m\leq 3000
n,m≤3000,但是询问数比较多。
所以考虑把询问离线下来,然后暴力枚举每一个点,
O
(
n
m
)
O(nm)
O(nm) 去更新答案。
数组含义:
假设我们当前正在更新从 r o o t root root 这个点开始的答案:
q
[
r
o
o
t
]
[
y
]
[
i
]
[
{
k
,
i
d
}
]
q[root][y][i][\{k, id\}]
q[root][y][i][{k,id}]:表示
x
x
x 到
y
y
y 的路径上的第
i
i
i 个问题问
x
x
x 到
y
y
y 的第
k
k
k 个点是啥,
i
d
id
id 为离线后原询问的下标
a
n
s
[
i
]
ans[i]
ans[i]:表示第
i
i
i 个询问的答案
v
i
s
2
[
i
]
vis2[i]
vis2[i]:表示这个点的是否有被更新过答案,如果被更新过,则不能再次更新(字典序最小)
v
i
s
1
[
i
]
vis1[i]
vis1[i]:表示这个点是否在搜索树上(是否被走过),如果是,那么说明形成了环,反之不成环。
c
n
t
[
i
]
cnt[i]
cnt[i]:表示
i
i
i 是多少个环的起始点
特别的,
t
m
p
tmp
tmp 表示当前环的个数。
算法过程:
枚举路径初始点
r
o
o
t
root
root ,做一遍
d
f
s
dfs
dfs
假设当前我们搜索到节点
y
y
y , 有如下三种情况:
- v i s 2 [ y ] = 1 vis2[y] = 1 vis2[y]=1 , 说明当前节点有字典序更小的路径可以到达这个点,所以直接跳过即可
- v i s 2 [ y ] = 0 vis2[y] = 0 vis2[y]=0 && v i s 1 [ y ] = 0 vis1[y] = 0 vis1[y]=0, 说明当前点 y y y 没有被访问过,继续 d f s dfs dfs
- v i s 2 [ y ] = 0 vis2[y] = 0 vis2[y]=0 && v i s 1 [ y ] = 1 vis1[y] = 1 vis1[y]=1, 重点来了, 因为 v i s 1 [ y ] = 1 vis1[y]=1 vis1[y]=1, 说明形成了环,因此需要将环上的点以及环所能到达的点都赋成 − 1 -1 −1 ,如果暴力去枚举环上的点并标记 − 1 -1 −1, 其实比较难写。这里我记录环的个数 ( t m p ) (tmp) (tmp)以及环的起始点, 在 d f s dfs dfs 的过程中,如果 t m p > 0 tmp>0 tmp>0 ,那么说明当前点是在环上,在枚举出边的时候直接讲答案赋成 − 1 -1 −1,反之就直接更新答案
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 3001, M = 4e5 + 7;
int n, m, k;
int ans[M] = {};
vector < pair <int , int> > q[N][N];
vector < int > a[N];
int qq[N], top = 0;
int tmp = 0;
bool vis1[N], vis2[N] = {};
int root = 0;
int cnt[N] = {};
void dfs(int x) {
qq[++ top] = x;
if (!tmp) {
for (int i = 0; i < q[root][x].size(); i ++) {
int kk = q[root][x][i].first;
int id = q[root][x][i].second;
if (kk <= top) ans[id] = qq[kk];
}
}
for (int i = 0; i < a[x].size(); i ++) {
int y = a[x][i];
if (vis2[y]) continue;
if (!vis1[y]) vis1[y] = 1, dfs(y);
else ++ tmp, cnt[y] ++;
}
-- top;
tmp -= cnt[x]; //接下来回溯,因此不在以x为起始的环上了,所以要减去cnt[x]
cnt[x] = 0;
vis2[x] = 1;
}
int main() {
scanf("%d %d %d", &n, &m, &k);
for (int i = 1; i <= m; i ++) {
int x, y;
scanf("%d %d", &x, &y);
a[x].push_back(y);
}
for (int i = 1; i <= n; i ++) sort(a[i].begin(), a[i].end());
for (int i = 1; i <= k; i ++) {
int x, y, z;
scanf("%d %d %d", &x, &y, &z);
q[x][y].push_back(pair <int, int>{z, i});
ans[i] = -1;
}
for (int i = 1; i <= n; i ++) {
tmp = 0, root = i, top = 0;
for (int j = 1; j <= n; j ++) vis1[j] = vis2[j] = 0;
dfs(i);
}
for (int i = 1; i <= k; i ++) printf("%d\n", ans[i]);
return 0;
}