目录
工作需要,今天仔细研究了一下联想的数字化转型案例,主要参考联想集团发布的《联想数字化转型及新IT白皮书》,从转型背景、转型经历及转型成果/价值三个方面进行了相关梳理。
1.转型背景
对外宏观背景:(PEST模型)
政治背景:十九大以来党和国家高度重视数字化转型,国家领导曾指出要审时 度势精心谋划超前布局力争主动,实施国家大数据战略加快建设数字 中国,推动实体经济和数字经济融合发展,推动互联网、大数据、人 工智能同实体经济深度融合。2018 年 12 月,中央经济工作会议首 次定义了“新基建”,把 5G、人工智能、工业互联网、物联网定义 为“新型基础设施建设”;在 2020 年 3 月国资委发文中,重申数 字化转型升级的国家性和紧迫性 ;在 2020 年 4 月中共中央、国务 院编制《关于构建更加完善的要素市场化配置体制机制的意见》中,首次将数据纳入要进行市场化配置的生产要素。
经济背景:数字化已经成为经济发展的新动能,而数字化转型则是各类社会经济实体进入数字经济的主要途径,数字化的转型已经成为不可逆转的趋势,并且越来越成为推动经济社会发展的核心驱动力,正在深刻变革全球生产组织和贸易结构、重新定义生产力和生产关系、全面重塑经济和社会发展方式。
社会背景:数字化转型在不断改变着各个行业的业务形态。教育行业,智慧教育倡导以智能技术赋能教育变革, 促进教育教学模式的深层次变革,全面提升教育服务能力;金融行业,数字化成为金融机构业务增长的核心动力;医疗行业,正在进入临床诊疗数据的智慧应用阶段,对于各类数字化支撑手段产生了较大的依赖……
技术背景:新的技术不断演进,,以人工智能(Artificial Intelligence)、区块链(Blockchain)、云计算(Cloud)、大数据(Data)、电子商 务(E-Commerce),以及物联网、边缘计算、5G 等为代表的各类新技术融合发展,推动着技术范式的转变,并与各行业广泛的渗透和融通,成为新工业革命的主要驱动力,也成为改变生产方式、产业变革升级的强大新动能。与之相适应的 数字经济已成为当前发展最快、创新最活跃、辐射最广泛的经济活动。全球各大企业也纷纷把数字化转型作为企业战略的核心要素之一。
企业内部背景(转型前的现状及问题):
数据方面:1.有数据不能直接用:有数据沉淀,但存在数据孤岛、数据不一致性、 大量手工数据、数据口径不一致、数据颗粒度粗、更新频率低等问题,这些痛点对业务带来了巨大的负面影响。2.知道数据有用,不知道怎么用:对数据进行深挖与洞察方面仍存在大量不足, 未能将数据分析方法与实际业务场景决策、流程相结合,缺乏数据应用实践案例。
技术方面:只知技术、不知场景。单纯的引入技术并没有达到预期的目标,业务场景领域,虽已开始探索,但业务场景缺乏积累与参考,缺乏数字化业务场景的业务价值支撑。领先技术的引进必须与业务场景相适应,通过与场景的融合才能发挥技术的优势。
组织方面:人员的数字化能力差异较大,IT 组织无论从职能定位、职责分工、治理模式、开发运维分工等各方面都无法适应或满足业务数字化带来的敏捷、创新业务的要求,亟待转型。
2.转型经历
2014-2015 年:联想数字化转型的试点阶段
关注点主要在于有业务需求时如何满足,为此联想开展了如下举措:
- 满足业务零散数字化需求 ;
- IT 部门以小分队形式攻坚 ;
- 技术架构进行小范围试点优化 ;
- 尝试应用新技术并进行吸收学习 ;
2016年:联想数字化转型整体规划关键一年
重点关注于建立体系化的数字化转型思路和方法,其具体举措包括 :
- 从全集体角度出发考虑数字化转型诉求 ;
- 在高层领导层面达成共识 ;
- 进行数字化业务价值梳理 ;
- 定义应用场景及业务框架 ;
- 进行技术架构的优化及重构
2017-2019 年:联想数字化转型全面推广的阶段
联想着重于向数字化原生组织转型,以数字化技术引领数字化业务创新:
1.数次调整集团业务单元架构 ;
2.进行数字化转型全员宣贯,推广敏捷文化 ;
3.建立面向新 IT 的数字原生组织,支持双态、云化等新架构的运营 ;
4.根据新 IT 技术架构,新应用根据新架构进行开发部署,并逐步将老系统向新架构进行迁移
2020 年之后:联想数字化转型的持续优化阶段
联想在已形成的数字化运营机制下,根据市场变化快速 进行业务、技术、组织的迭代,取得了显著的效果,部分关键举措包括:
1.根据市场变化,特别是后疫情时代、双循环、新基建的需求,持续对集团业务单元架构及运营机制进行优化,成立创投、 供应链服务、服务方案等新业务单元 ;
2.建立“内生外化”机制,将已形成的数字化能力向外输出。
3.转型成果/价值
对内:
数字化转型带来的8个方面的价值:
1)数字化转型提高了员工的生产力
2)数字化转型驱动了业务发展
数字技术已经渗透到了企业产业链的各个环节,通过采用各类数字化技术对传统工业产线带来了颠覆性、革命性的影响。包括二维码、RFID、传感器、工控系统、物联网、ERP、 CRM 在内的广泛应用,推动了联想生产企业各生产流程环节的互联互通,促进了互联网与工业融合发展。
生产中的数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。 在生产过程中使用这些大数据,就能分析整个生产流程,一旦某个流程偏离了标准工艺,就会发出报警信号,快速地发现 错误或者瓶颈所在。
数据智能还可以优化生产过程,通过将生产制造各个环节的数据整合集聚,并对产品生产过程建立虚拟模型,可以实现对 生产流程的仿真和优化。当所有流程和绩效数据都能在系统中重建时,对各环节制造数据的集成分析就会促使产线改进生 产流程。例如,在能耗分析方面,在设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情 形,由此便可在生产过程中优化能源的消耗,对所有流程进行分析,此举将会大大降低能耗。
3)数字化转型提升了客户体验
4)数字化转型带来了移动应用
联想移动业务的目标是为全体员工提供安全、优化的随时随地可以获得的移动应用,随着 移动技术的不断发展,智能手机和移动应用(APP)已经全面渗透到了日常工作的方方面面, 联想的移动应用已经被广泛的应用到不同业务场景中,包括工厂生产线上的工人,联想的 销售人员,以及日常的办公人员。
4)数字化转型提高了业务流程的自动化程度
5)数字化转型帮助企业开发新的数字业务/收入流
在线电商平台、数字化门店、全渠道融合、以及忠诚计划等多种方法和手段,拓展了各主营业务的收入,当前各类数字化交易入 口和手段,已经成为联想重要的收入来源。
6)数字化转型提升了产品的创新能力
联想通过数字化技术完善了整个智能制造体系,从数据采集状态感知、实时分析动态管理、科学决策精准执行等多个领域实现了创新和提升。实现了对制造执行管理(Le-MES)、精益管理(Pulling/Andon)、 工艺管理(S-BOP)、设备工装管理(S-TPM)、现场物料管理(Digital Material)、数字化用工管理(Digital DL)等 生产要素的流程管理 ;以及综合计划管理(IPS & ADS)、数字化质量管理(DQM)、供应链协作(SCC)、仓储管理系 统(WMS)、运输管理系统(TMS)等水平协同 ;另外还通过工厂绩效管理中心(Digital Performance)以及集团数智 运营中心(DIOC)提升了科学决策能力。所有这些都对产品创新和研发打造了坚实的基础。
7)实现了数字化供应链的优化
包括与上游供应商系统的连接、与内部 ERP 的连接、通过 API 与智慧 门店和商城的相连、以及与用户使用的 SaaS 平台的连接。通过连接采购端与供应商端,将客户需求和产品供给的信息流 打通,确保供需的精准匹配,从而从系统层面打通数据流,让数据能够在供应链上下游实时的、准确地流动,既确保从客户需求预测到库存计划再到供给计划正向匹配,又能够基于大数据对供需匹配进行逆向修正,实现了从订单到支付的全流 程在线协同,大大提高整体采购效率。除此之外,基于大数据分析和人工智能技术,在销售预测、自动补货,库容计划等 各链路节点,实现数据决策和系统智能触发,以数字化手段提高整体管理效率。
对外:
联想在自身数字化转型成功之后,打造了很多数字化转型产品和方案(可见《联想数字化转型及新IT白皮书》),打造了企业数字化转型服务体系,为不同行业客户提供从前期的需求分析、到总体规划、到实施部署的完整服务能力,确保客户的数字化转型成功。