自动驾驶-定位概述

自动驾驶中的定位是实现车辆自主行驶的关键环节,它为车辆的决策和控制提供了精确的空间位置和姿态信息。

定位的核心目标是在各种复杂的环境和工况下,为自动驾驶汽车实时、准确地确定其在三维空间中的绝对位置和相对姿态,包括车辆的经度、纬度、高度、航向角、俯仰角和横滚角等参数。

以下对常见的定位方法和技术进行更深入的阐述:

1. 全球导航卫星系统(GNSS)

- 原理:通过接收来自多颗卫星的信号,计算信号传播的时间差来确定车辆与卫星之间的距离,进而通过三角测量原理计算出车辆的位置。

- 优点:能够在开阔区域提供较准确的全球定位信息。

- 局限性:

- 信号易受遮挡:在高楼林立的城市峡谷、隧道、地下停车场等环境中,卫星信号可能被建筑物、山体等阻挡,导致接收不到足够的卫星信号,从而影响定位精度甚至无法定位。

- 多路径效应:卫星信号在传播过程中可能经过建筑物、水面等反射,产生多个路径的信号叠加,导致测量误差。

- 精度限制:民用级的 GNSS 定位精度通常在数米到十几米之间,对于自动驾驶的高精度要求往往不够。

2. 惯性测量单元(IMU)

- 组成:通常由加速度计和陀螺仪组成。加速度计测量车辆在三个轴向上的加速度,陀螺仪测量车辆的角速度。

- 工作原理:通过对加速度进行二次积分可以得到车辆的位移,通过对角速度进行积分可以得到车辆的姿态变化。

- 优点:能够在短时间内提供高精度的相对位置和姿态变化信息,不受外界环境干扰。

- 局限性:

- 误差累积

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值