KNN算法概述
KNN可以说是是最常用的分类算法之一,KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。
KNN算法原理
KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。听起来有点绕,还是看看图吧。
图中绿色的点就是我们要预测的那个点,假设K=3。那么KNN算法就会找到与它距离最近的三个点(这里用圆圈把它圈起来了),看看哪种类别多一些,比如这个例子中是蓝色三角形多一些,新来的绿色点就归类到蓝三角了。
但是,当K=5的时候,判定就变成不一样了。这次变成红圆多一些,所以新来的绿点被归类成红圆。从这个例子中,我们就能看得出K的取值是很重要的。
明白了大概原理后,我们就来说一说细节的东西吧,主要有两个,K值的选取和点距离的计算。
距离计算
要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算,欧式距离计算等等。不过通常KNN算法中使用的是欧式距离,这里只是简单说一下,拿二维平面为例,二维空间两个点的欧式距离计算公式如下:
ρ
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
\rho=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
ρ=(x2−x1)2+(y2−y1)2
这个高中应该就有接触到的了,其实就是计算(x1,y1)和(x2,y2)的距离。拓展到多维空间,则公式变成这样:
d
(
x
,
y
)
:
=
(
x
1
−
y
1
)
2
+
(
x
2
−
y
2
)
2
+
⋯
+
(
x
n
−
y
n
)
2
=
∑
i
=
1
n
(
x
i
−
y
i
)
2
d(x, y):=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
d(x,y):=(x1−y1)2+(x2−y2)2+⋯+(xn−yn)2=i=1∑n(xi−yi)2
这样我们就明白了如何计算距离,KNN算法最简单粗暴的就是将预测点与所有点距离进行计算,然后保存并排序,选出前面K个值看看哪些类别比较多。但其实也可以通过一些数据结构来辅助,比如最大堆,这里就不多做介绍,有兴趣可以百度最大堆相关数据结构的知识。
KNN算法实现
# coding: utf-8
from sklearn.datasets import load_iris
from collections import Counter
import numpy as np
def knn(x, y, query, k=3, clf=True):
#将x和y的值放入字典存储,字典的Key是tuple类型,存放的是特征值,每个Key对应的value存放的是标签值。
history = {tuple(x_): y_ for x_, y_ in zip(x, y)}
#将字典的每个item包含的是(key, value)。
#对所有的item的按照和query的远近进行排序。并且取k个距离最近的值。
#lambda表达式用来求得每个item和query的距离。
neighbors = sorted(history.items(), key=lambda x_y: np.sum((np.array(x_y[0]) - np.array(query)) ** 2))[:k]
#获取k个距离最近的点的标签值。
neighbors_y = [y for x, y in neighbors]
#Counter(neighbors_y)用于统计每个值出现的次数,并且返回一个字典,字典的key是每个值,value是次数。
#most_common(n) 最常见的n个值,取值为1表示出现频率最高的值。运行返回的是一个list,每个元素是tuple,(value,出现次数)
if clf: #分类任务
return Counter(neighbors_y).most_common(1)[0][0] #返回最常见的value值,这个value值对应但就是类别值。
else:
#这个是编程了回归任务
return np.mean(neighbors_y)
if __name__ == '__main__':
iris_x = load_iris()['data']
iris_y = load_iris()['target']
print(iris_x[0], iris_y[0])
query = [5, 5, 4, 7]
cls = knn(iris_x, iris_y, query, k=3, clf=True)
print(cls)
运行结果
[5.1 3.5 1.4 0.2] 0
2
K值选择
通过上面那张图我们知道K的取值比较重要,那么该如何确定K取多少值好呢?答案是通过交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的K值开始,不断增加K的值,然后计算验证集合的方差,最终找到一个比较合适的K值。
通过交叉验证计算方差后你大致会得到下面这样的图:
这个图其实很好理解,当你增大k的时候,一般错误率会先降低,因为有周围更多的样本可以借鉴了,分类效果会变好。但注意,和K-means不一样,当K值更大的时候,错误率会更高。这也很好理解,比如说你一共就35个样本,当你K增大到30的时候,KNN基本上就没意义了。
所以选择K点的时候可以选择一个较大的临界K点,当它继续增大或减小的时候,错误率都会上升,比如图中的K=10。具体如何得出K最佳值的代码,下一节的代码实例中会介绍。
KNN特点
KNN是一种非参的,惰性的算法模型。什么是非参,什么是惰性呢?
非参的意思并不是说这个算法不需要参数,而是意味着这个模型不会对数据做出任何的假设,与之相对的是线性回归(我们总会假设线性回归是一条直线)。也就是说KNN建立的模型结构是根据数据来决定的,这也比较符合现实的情况,毕竟在现实中的情况往往与理论上的假设是不相符的。
惰性又是什么意思呢?想想看,同样是分类算法,逻辑回归需要先对数据进行大量训练(tranning),最后才会得到一个算法模型。而KNN算法却不需要,它没有明确的训练数据的过程,或者说这个过程很快。
KNN算法的优势和劣势
KNN算法优点
简单易用,相比其他算法,KNN算是比较简洁明了的算法。即使没有很高的数学基础也能搞清楚它的原理。
模型训练时间快,上面说到KNN算法是惰性的,这里也就不再过多讲述。
预测效果好。
对异常值不敏感
KNN算法缺点
对内存要求较高,因为该算法存储了所有训练数据
预测阶段可能很慢
对不相关的功能和数据规模敏感