Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
public class Solution {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] nums = {1,0,3,4};
int[] res = Solution.productExceptSelf(nums);
for(int x : res)
System.out.print(x+" ");
}
public static int[] productExceptSelf(int[] nums) {
int numsLen = nums.length;
int[] res = new int[numsLen];
res[0] = 1;
for(int i = 1 ;i < numsLen ;i++)//先从左向右乘,每一位对前几位数进行累乘保存到res中
{
res[i] = res[i-1]*nums[i-1];
}
int right = 1;
for(int i = numsLen-1;i>=0 ;i--)//从右向左,每一位对后几位进行累乘。
{
res[i] *= right;
right *= nums[i];
}
return res;
}
}