Problem A

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5685


 分析: 此题本质是求Ar*A(r+1)*...An%p,亦即[(A1*A2*...An)/(A1*A2*...Ar-1)]%p,由于 模运算的除法运算不能类比四则运算,即(a / b) % p (a % p / b % p) % p,我们需要用到乘法逆元,在此,先对 乘法逆元有关的知识做些介绍。
  1. 对于正整数a和p,如果有a*k≡1 (mod p),那么同余方程中k的最小正整数解叫a模p的逆元
  2. 乘法逆元有如下定理:(a*k) mod p结果与(a/b) mod p等价,其中k为b关于p的乘法逆元(证明见后面的补充)
  3. 费马小定理:已知p是质数且gcd(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)

由以上三点知识,我们容易确定最终结果为h[b]*h[a-1]^(p-2) mod p,对于h[a-1]^(p-2),用快速幂或者扩展欧几里得算法来计算即可,时间效率为O(lgP)

#include <cstdio>
#include <iostream>
#include <cstring> 

using namespace std;
const int LEN = 100005;
const int P = 9973;

int N;
char s[LEN];
int h[LEN];

void PrePro(){
	int len = strlen(s);
	h[0] = 1;
	for(int i=1;i<=len;i++){
		h[i] = h[i-1]*(s[i-1]-28)%P;
	}
}

int KSM(int a, int n){//快速幂
	int ret = 1;
	int tmp = h[a-1];
	while(n){
		if(n&1) ret = ret*tmp%P;
		n >>= 1;
		tmp = tmp*tmp%P;
	}
	return ret;
}
void GetHashValue(){
	int a,b;
	for(int i=1;i<=N;i++){
		scanf("%d%d",&a,&b);
		//h[b]*h[a-1]^(P-2)modP
		printf("%d\n",h[b]*KSM(a,P-2)%P); 
	}
}

int main(){
	while(scanf("%d",&N)!=EOF){
		scanf("%s",s);
		PrePro();
		GetHashValue();
	}
	return 0;
}

乘法逆元定理的证明:

由b*k≡1 (mod p)有b*k=p*x+1,k=(p*x+1)/b,将k代入(a*k) mod p,得:

[a*(p*x+1)/b]mod p=[(a*p*x)/b+a/b]mod p(注意:只要a整除b,自然有(a*p*x)整除b)

={[(a*p*x)/b] mod p +(a/b)} mod p

={[p*(a*x)/b]mod p +(a/b)} mod p,而p*[(a*x)/b] mod p=0

=(a/b) mod p

参照:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值