zhuiqiuk
码龄14年
  • 1,282,533
    被访问
  • 62
    原创
  • 767,862
    排名
  • 261
    粉丝
  • 4
    铁粉
关注
提问 私信
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2008-04-16
博客简介:

zhuiqiuk的专栏

查看详细资料
个人成就
  • 获得308次点赞
  • 内容获得165次评论
  • 获得1,165次收藏
创作历程
  • 1篇
    2020年
  • 90篇
    2019年
  • 31篇
    2018年
  • 172篇
    2017年
  • 121篇
    2016年
  • 6篇
    2015年
成就勋章
TA的专栏
  • 论文撰写
    2篇
  • deep learning-paper
    82篇
  • CNN-net-structure
    31篇
  • 操作系统
    4篇
  • Android应用开发
    51篇
  • 机器学习
    67篇
  • svm
    7篇
  • 编程工具vs
    16篇
  • tensorflow
    40篇
  • caffe
    18篇
  • darknet
    7篇
  • C/C++编程
    11篇
  • Matlab编程
    4篇
  • 视频编辑与处理
    6篇
  • web-php
    6篇
  • 交互设计
    2篇
  • pytorch
    10篇
  • cloud
    2篇
  • python编程
    6篇
  • 动作检测与识别
    6篇
  • 深度学习 产品
    1篇
  • 期刊
    2篇
兴趣领域 设置
  • 人工智能
    opencvcaffetensorflowpytorch迁移学习
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

对比度受限的自适应直方图均衡化(CLAHE)(转)

直方图均衡化(HE)是一种很常用的直方图类方法,基本思想是通过图像的灰度分布直方图确定一条映射曲线,用来对图像进行灰度变换,以达到提高图像对比度的目的。该映射曲线其实就是图像的累计分布直方图(CDF)(严格来说是呈正比例关系)。然而HE是对图像全局进行调整的方法,不能有效地提高局部对比度,而且某些场合效果会非常差。如:上述原图和HE结果图的直方图分别为:因为从原图的直方图中求取的映射函数(CDF)形状为:将它作用于原图像会导致直方图被整体右移,没有充分利用整个灰度动态范围。为了提高图像的局部
转载
发布博客 2020.07.05 ·
563 阅读 ·
0 点赞 ·
0 评论

Logstash 讲解与实战应用

https://blog.51cto.com/tchuairen/1840596目录一、Logstash 介绍二、安装logstash三、使用命令行运行一个简单的logstash程序四、配置语法讲解五、filebeat基本讲解六、实战运用架构一:nginx日志->filebeat->logstash->redis->logstash->...
转载
发布博客 2019.12.27 ·
195 阅读 ·
0 点赞 ·
0 评论

pytorch手动实现滑动窗口操作,论fold和unfold函数的使用

在卷积网络中,经常会需要用到卷积核滑动窗口的操作,如下图所示。这个操作在大多数的深度学习框架中,都被封装的很好,以至于我们并不需要显式地调用便可以实现卷积网络的这个操作。但是,大部分深度学习框架也是提供了显式地进行滑动窗口操作的API的,在pytorch中就是unfold和fold。接下来我们来探讨下这两个函数的使用。在pytorch中,和unfold有关的有:torch.nn.Unf...
转载
发布博客 2019.12.17 ·
8317 阅读 ·
4 点赞 ·
2 评论

IEEE Access投稿(Latex模板)——参考文献的生成

从网站上下载latex模板https://journals.ieeeauthorcenter.ieee.org/create-your-ieee-journal-article/authoring-tools-and-templates/ieee-article-templates/templates-for-ieee-access/点击下载LaTex template,下载后补充替换模板内容...
转载
发布博客 2019.11.10 ·
7229 阅读 ·
0 点赞 ·
4 评论

IEEE-access 模板LaTeX Error: Something's wrong--perhaps a missing \item.

最近要开始写一篇Journal paper, 于是下载了IEEE上的模板,但是模板上的参考文献与正文是在一个界面上的, 像这样:\begin{thebibliography}{1} \bibitem{IEEEhowto:kopka} H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus...
转载
发布博客 2019.11.10 ·
631 阅读 ·
0 点赞 ·
0 评论

LSTM+CRF机器学习模型

本文介绍的深度学习模型来自Di Jin和Peter Szolovits的paper《PICO Element Detection in Medical Text via Long Short-Term Memory Neural Networks》。在该模型中涉及到的知识点主要有词嵌入(word embedding),双向LSTM网络,Attention机制(Hierarchical Attent...
转载
发布博客 2019.07.16 ·
1315 阅读 ·
0 点赞 ·
0 评论

Deep Reinforcement Learning 深度增强学习资源 (持续更新)

https://zhuanlan.zhihu.com/p/20885568Deep Reinforcement Learning深度增强学习可以说发源于2013年DeepMind的Playing Atari with Deep Reinforcement Learning 一文,之后2015年DeepMind 在Nature上发表了Human Level Control through ...
转载
发布博客 2019.07.11 ·
893 阅读 ·
0 点赞 ·
0 评论

NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING 笔记

这是一篇使用增强学习来进行模型搜索的论文。结构如下图:overview由于不知道网络的长度和结构,作者使用了一个RNN作为控制器,使用该控制器来产生一串信息,用于构建网络。之后训练该网络,并用网络的accuracy作为reward返回给控制器来更新控制器的参数,达到更优的策略。其中控制器(RNN)的设计借鉴了sequence to sequence的思想,不同的是它优化的是一...
转载
发布博客 2019.07.08 ·
479 阅读 ·
0 点赞 ·
0 评论

GPU 显存不足怎么办?

前言最近跑的模型都比较大,尤其是Bert, 这真的是难为我 1080ti 了, 在Bert的Example中,官方提供了一些 Trick 来帮助我们加速训练,很良心, 但感觉还不够,于是花费一些时间整理出一个 Trick 集合,来帮助我们在显存不足的时候来嘿嘿嘿。本文分为两大部分,第一部分引入一个主题:如何估计模型所需显存, 第二个主题:GPU显存不足时的各种 Trick 。监控 GP...
转载
发布博客 2019.06.05 ·
20369 阅读 ·
22 点赞 ·
6 评论

CVPR 2019 Oral 论文解读 | 百度提出关于网络压缩和加速的新剪枝算法

AI 科技评论按:百度关于网络压缩和加速的论文《 Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration》被 CCF A 类学术会议 CVPR 2019 收录为 Oral 论文,这篇论文提出了新的基于滤波器的几何中心(geometric median)的剪枝算法,来对神经网络进行...
转载
发布博客 2019.05.29 ·
978 阅读 ·
0 点赞 ·
0 评论

深度学习干货学习(1)——center loss

在构建loss时pytorch常用的包中有最常见的MSE、cross entropy(logsoftmax+NLLLoss)、KL散度Loss、BCE、HingeLoss等等,详见:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#loss-functions这里主要讲解一种考虑类间距离的Cente...
转载
发布博客 2019.05.28 ·
542 阅读 ·
0 点赞 ·
0 评论

深度学习干货学习(2)—— triplet loss

https://blog.csdn.net/Lucifer_zzq/article/details/81271260一、Triplet结构:triplet loss是一种比较好理解的loss,triplet是指的是三元组:Anchor、Positive、Negative:整个训练过程是: 首先从训练集中随机选一个样本,称为Anchor(记为x_a)。 然后再随机选取...
转载
发布博客 2019.05.28 ·
3614 阅读 ·
0 点赞 ·
0 评论

Bag of Tricks for Convolutional Neural Networks

https://zhuanlan.zhihu.com/p/51870052刚刚看了Bag of Tricks for Image Classification with Convolutional Neural Networks,一篇干货满满的文章,同时也可以认为是GluonCV 0.3: 超越经典的说明书,通过这个说明书,我们也拥有了超越经典的工具箱。我们都知道trick在CNNs中的重...
转载
发布博客 2019.05.28 ·
159 阅读 ·
0 点赞 ·
0 评论

论文分享--A Strong Baseline for Re-ID

https://zhuanlan.zhihu.com/p/65631409https://zhuanlan.zhihu.com/p/61831669分享最近读到的一篇论文Bag of Tricks and A Strong Baseline for Deep Person Re-identification,这篇文章对person reid问题中的训练技巧进行了一个很好的总结,并提出了一个...
转载
发布博客 2019.05.28 ·
2691 阅读 ·
2 点赞 ·
0 评论

ICML 2019 | Hinton等人新研究:如何更好地测量神经网络表示相似性

作者:Simon Kornblith、Mohammad Norouzi、Honglak Lee、Geoffrey Hinton参与:可可、路近期很多研究试图通过对比神经网络表示来理解神经网络的行为。谷歌大脑 Simon Kornblith、Geoffrey Hinton 等人的一项新研究引入了 centered kernel alignment (CKA) 作为相似性指数,并分析 CKA...
转载
发布博客 2019.05.27 ·
854 阅读 ·
1 点赞 ·
0 评论

tensorflow卷积神经网络中的padding参数最详细解释!

tensorflow卷积神经网络中的padding参数最详细解释!当使用tensorflow创建卷积神经网络时,肯定要用到卷积层和池化层,tendorflow关于建立卷积层和池化层的API都有padding这个参数,如下所示:- tf.nn.conv2d(input,filter,strides,padding)- tf.nn.max_pool(input,ksize,strides,...
转载
发布博客 2019.05.19 ·
2829 阅读 ·
4 点赞 ·
1 评论

期刊分区常识

作为一个科研工作者,了解期刊论文的一些基本常识是大有裨益的。这对于我们深入了解所从事领域的研究、和论文的写作与发表等都会有很大的帮助。比如对于期刊分区的问题,从事科研的人都听过,但是也许你并没有深入了解其概念和意义。尤其对于刚刚步入科研领域和外行的人来说,可能仅仅凭借分区和影响因子来评价期刊的优劣。如果这样的话,难免被内行人笑话。这篇文章着重讨论一下论文分区的问题并科普一些有关的基本常识。...
转载
发布博客 2019.04.29 ·
1838 阅读 ·
0 点赞 ·
0 评论

学术论文级别

(1) 公开发表的论文分为六个级别(类)  第一级-T类:特种刊物论文,指在《SCIENCE》和《NATURE》两本期刊上发表的论文第二级 - A类:权威核心刊物论文,指被国际通用的SCIE、EI、ISTP、SSCI以及A&HCI检索系统所收录的论文(以中国科技信息研究所检索为准),或同一学科在国内具有权威影响的中文核心刊物上发表的论文,论文不含报道性综述、摘要、消息等。第三...
转载
发布博客 2019.04.29 ·
6136 阅读 ·
0 点赞 ·
0 评论

拉普拉斯金字塔分解及图像融合

单图像求高斯金字塔和拉普拉斯金字塔高斯金字塔设高斯金字塔第l层图像Gl所做操作:即当前层是上一层的高尺度图像先高斯滤波,再降采样。下采样过程这里,N为层数。Rl为l层行数。w(m,n)是5*5二维可分离高斯滤波器。拉普拉斯金字塔分解目的是将源图像分别分解到不同的空间频带上,相当带通滤波构造过程:第l层为高斯金字塔l层与l+1层图像经过内插放大后图像的差。上采样...
转载
发布博客 2019.04.25 ·
2485 阅读 ·
0 点赞 ·
0 评论

图像金字塔(Python实现)

图像金字塔(Python实现)1 简介在图像处理中常常会调整图像大小,最长的就是放大(zoom in)和缩小(zoom out),尽管集合变换也可以实现图像放大或者缩小一个图像金字塔式一系列的图像组成,最底下一张式图像尺寸最大,最上方的图像尺寸最小,从空间上从上向下看,就可以看成埃及金字塔.高斯金字塔–用来对 图像进行降采样拉普拉斯金字塔–用来重建一张图片根据他的上层降采样图片2 高斯...
转载
发布博客 2019.04.25 ·
4303 阅读 ·
2 点赞 ·
0 评论
加载更多