Spark将RDD转换成DataFrame的两种方式

http://zhao-rock.iteye.com/blog/2328161

介绍一下Spark将RDD转换成DataFrame的两种方式。 
1.通过是使用case class的方式,不过在scala 2.10中最大支持22个字段的case class,这点需要注意 
2.是通过spark内部的StructType方式,将普通的RDD转换成DataFrame 
装换成DataFrame后,就可以使用SparkSQL来进行数据筛选过滤等操作 

下面直接代码说话 (scala代码)

package spark_rdd  
  
import org.apache.spark._  
import org.apache.spark.sql._  
import org.apache.spark.sql.types._  
  
object SparkRDDtoDF {  
    
  //StructType and convert RDD to DataFrame  
  def rddToDF(sparkSession : SparkSession):DataFrame = {  
    //设置schema结构  
    val schema = StructType(  
      Seq(  
        StructField("name",StringType,true)            
        ,StructField("age",IntegerType,true)  
      )  
    )  
    val rowRDD = sparkSession.sparkContext  
      .textFile("file:/E:/scala_workspace/z_spark_study/people.txt",2)  
      .map( x => x.split(",")).map( x => Row(x(0),x(1).trim().toInt))    
    sparkSession.createDataFrame(rowRDD,schema)  
  }  
    
  //use case class Person  
  case class Person(name:String,age:Int)  
  def rddToDFCase(sparkSession : SparkSession):DataFrame = {  
    //导入隐饰操作,否则RDD无法调用toDF方法  
    import sparkSession.implicits._  
    val peopleRDD = sparkSession.sparkContext  
      .textFile("file:/E:/scala_workspace/z_spark_study/people.txt",2)  
      .map( x => x.split(",")).map( x => Person(x(0),x(1).trim().toInt)).toDF()  
    peopleRDD  
  }  
    
  def main(agrs : Array[String]):Unit = {  
      val conf = new SparkConf().setMaster("local[2]")  
      conf.set("spark.sql.warehouse.dir","file:/E:/scala_workspace/z_spark_study/")  
      conf.set("spark.sql.shuffle.partitions","20")  
      val sparkSession = SparkSession.builder().appName("RDD to DataFrame")  
            .config(conf).getOrCreate()  
       //通过代码的方式,设置Spark log4j的级别  
      sparkSession.sparkContext.setLogLevel("WARN")  
      import sparkSession.implicits._  
      //use case class convert RDD to DataFrame  
      //val peopleDF = rddToDFCase(sparkSession)  
        
      //use StructType  convert RDD to DataFrame  
      val peopleDF = rddToDF(sparkSession)  
      peopleDF.show()  
      peopleDF.select($"name",$"age").filter($"age">20).show()  
        
  }  
    
}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值